Tetrabromobisphenol A, but not bisphenol A, disrupts plasma membrane homeostasis in myeloid cell models – A novel threat from an established persistent organic pollutant
Bisphenol A (BPA, a plastic polymer component) and tetrabromobisphenol A (TBBPA, a brominated flame retardant) are industrial compounds and representative persistent organic pollutants (POPs) with similar chemical structure. We studied their impact on biological membrane dynamics, which is an emergi...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2025-01, Vol.961, p.178284, Article 178284 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bisphenol A (BPA, a plastic polymer component) and tetrabromobisphenol A (TBBPA, a brominated flame retardant) are industrial compounds and representative persistent organic pollutants (POPs) with similar chemical structure. We studied their impact on biological membrane dynamics, which is an emerging and understudied target for environmental contaminants, using a set of state-of-the-art methods. We found that exposure to TBBPA, but not to BPA, leads to disruption of biophysical homeostasis of the plasma membrane in myeloid cell lines HL-60, THP-1 and Mono Mac 6. Applied methods include: pyrene excimer formation, fluorescence anisotropy, solvatochromic shift ratiometry (using di-4-ANEPPDHQ, NR12A and laurdan) and fluorescence recovery after photobleaching. TBBPA increased rotational and lateral mobility and decreased general polarity and lipid order in plasma membranes of myeloid cells, but decreased mobility and increased rigidity in internal membranes of the same cells. Strikingly, BPA had no significant membrane effects in these cells, suggesting a specific molecular interaction mechanism of TBBPA action which may potentially lead to disruption of immune function. Identification of this novel threat from an established pollutant with documented exposure pathways highlights the possibility that immunotoxicity of POPs may contribute to their environmental toxicity burden.
[Display omitted]
•Lipid order and mobility of cellular membranes is disrupted by TBBPA in model monocytic cell lines.•Full study of membrane toxicity requires a set of complementary biophysical methods.•TBBPA has opposite effects on the properties of plasma membranes and internal membranes.•BPA, despite its structural similarity, does not have a deleterious impact on membranes.•We identify plasma membranes of immune cells as a novel object of environmental toxicity. |
---|---|
ISSN: | 0048-9697 1879-1026 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.178284 |