F-53B disrupts energy metabolism by inhibiting the V-ATPase-AMPK axis in neuronal cells

6:2 chloro-polyfluorooctane ether sulfonate (F-53B) is considered neurotoxic, but its mechanisms remain unclear. This study aimed to investigate the toxic effects of F-53B on neuronal cells, focusing on the role of the V-ATPase-AMPK axis in the mechanism of abnormal energy metabolism. Mouse astrocyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2025-01, Vol.487, p.137111, Article 137111
Hauptverfasser: Zhang, Yue, Li, Tingting, Ding, Xueman, Liu, Li, Ma, Runjiang, Qin, Wenqi, Yan, Chulin, Wang, Chun, Zhang, Jingjing, Keerman, Mulatibieke, Niu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:6:2 chloro-polyfluorooctane ether sulfonate (F-53B) is considered neurotoxic, but its mechanisms remain unclear. This study aimed to investigate the toxic effects of F-53B on neuronal cells, focusing on the role of the V-ATPase-AMPK axis in the mechanism of abnormal energy metabolism. Mouse astrocytes (C8-D1A) and human neuroblastoma cells (SH-SY5Y) exposed to F-53B were used as in vitro models. Our findings demonstrated that F-53B inhibited the expression of V-ATPase B2 and reduced V-ATPase activity, leading to an increase in lysosomal pH, decreased expression of TRPML1, and lysosomal Ca2 + accumulation. In turn, led to reduced the expression of CaMKK2 and phosphorylated AMPK (p-AMPK). Ultimately, mitochondria were damaged, evidenced by increased mitochondrial reactive oxygen species, mitochondrial membrane potential, and impaired mitochondrial oxidative phosphorylation, as shown by reduced NDUFS1 expression and diminished respiratory chain complex I activity. F-53B reduced the expression of the key glycolytic protein PFKFB3. Notably, V-ATPase B2 overexpression indirectly activates AMPK. Furthermore, resveratrol, an AMPK agonist, alleviates mitochondrial dysfunction and increases ATP production by promoting the recovery of mitochondria and glycolytic pathways. These findings elucidate a novel mechanism by which F-53B induces neurotoxicity through the V-ATPase-AMPK axis, and indicate V-ATPase and AMPK as potential therapeutic targets. [Display omitted] •F-53B disrupts neuronal energy metabolism via V-ATPase-AMPK axis.•V-ATPase overexpression rescues lysosomal Ca2+ efflux and AMPK activity.•RSV activates AMPK, restoring energy metabolism in F-53B-treated neurons.
ISSN:0304-3894
1873-3336
1873-3336
DOI:10.1016/j.jhazmat.2025.137111