Easy to use particle-mediated transport of various dissolved active agents into the hair follicles – A novel platform technology
[Display omitted] The use of nanoparticulate systems for the transport of active ingredients into hair follicles has been researched for almost two decades, resulting in countless publications with a wide variety of particle types, release mechanisms and active ingredients. The production of a stabl...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2025-01, Vol.670, p.125200, Article 125200 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The use of nanoparticulate systems for the transport of active ingredients into hair follicles has been researched for almost two decades, resulting in countless publications with a wide variety of particle types, release mechanisms and active ingredients. The production of a stable dispersion is often time-consuming and costly. In this publication, we demonstrate for the first time that simply adding diverse submicron particles to a drug solution significantly increases follicular penetration depth by over 160% to 190%, allowing the targeting of subinfundibular structures. Our results indicate that the increase in follicular penetration is independent of the type or sphericity of the particles (nanocrystals (NC) or lipid submicron particles (LN)). Furthermore, this principle can be used with both small molecules and large molecule therapeutics, as demonstrated with the model drugs fluorescein sodium, 6-carboxyfluorescein, green fluorescent protein and FITC-BSA. This highlights the high versatility of this new formulation principle. The system may be used for various hair follicle-associated diseases such as alopecia or for the preoperative disinfection of hair follicles and the transfollicular transport of active pharmaceutical and/or cosmetic ingredients. |
---|---|
ISSN: | 0378-5173 1873-3476 1873-3476 |
DOI: | 10.1016/j.ijpharm.2025.125200 |