Temporal trends and sources of organic micropollutants in wastewater

Effluent wastewater from conventional wastewater treatment plants (WWTPs) is a source of environmental micropollutants. This study investigated temporal trends of organic micropollutants in effluent wastewater, aiming to identify underlying drivers and their implications for treatment efficiency. Fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-12, Vol.957, p.177555, Article 177555
Hauptverfasser: Kilpinen, Kristoffer, Tisler, Selina, Jørgensen, Mathias B., Mortensen, Peter, Christensen, Jan H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effluent wastewater from conventional wastewater treatment plants (WWTPs) is a source of environmental micropollutants. This study investigated temporal trends of organic micropollutants in effluent wastewater, aiming to identify underlying drivers and their implications for treatment efficiency. From September to December 2022, we collected 168 effluent and 10 influent samples. These samples were concentrated using a three-layer solid-phase extraction method and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Both targeted and suspect screening approaches were employed, allowing for the full quantification of 64 micropollutants and the identification of 90 additional compounds through suspect screening. Correlations revealed distinct groups of micropollutants with similar temporal trends, indicating common sources or behaviors during treatment. Notably, caffeine and paracetamol showed strong correlations with influent flow rates, indicating their removal efficiency is significantly influenced by hydraulic conditions. PFAS compounds, tire-wear chemicals, and biocides correlated with rain events. Micropollutants were categorized into nine groups based on their temporal trends, linking them to sources and persistence in the WWTP. Industrial discharges significantly contributed to spikes in pharmaceuticals like amitriptyline and citalopram. Metabolite analysis effectively distinguishing between sources of consumption and industrial discharge. These findings underscore the need for regulatory frameworks addressing a broader range of micropollutants. Key events such as rain and industrial discharges impact micropollutant composition and concentrations in effluent wastewater. Our study provides insights into their dynamics within WWTPs, informing improved treatment strategies. [Display omitted] •Tracked 150 micropollutants' trends in wastewater over three months.•Sampling variance complicates accurate calculation of removal efficiencies.•Rain events affect the removal efficiencies of micropollutants.•Micropollutants cluster based on their sources and persistence within the WWTP.•Industrial discharges influence effluent wastewater composition.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.177555