A hurdle strategy based on the combination of non-thermal treatments to control diarrheagenic E. coli in cheese
This study aimed to assess the efficacy of a multi-hurdle process combining mild High Hydrostatic Pressure (HHP) treatments and Thyme Oil (TO) edible films as a non-thermal method to combat pathogenic E. coli (aEPEC and STEC) in raw cow's-milk cheese stored at 7 °C and packaged under modified a...
Gespeichert in:
Veröffentlicht in: | International journal of food microbiology 2024-12, Vol.425, p.110859, Article 110859 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to assess the efficacy of a multi-hurdle process combining mild High Hydrostatic Pressure (HHP) treatments and Thyme Oil (TO) edible films as a non-thermal method to combat pathogenic E. coli (aEPEC and STEC) in raw cow's-milk cheese stored at 7 °C and packaged under modified atmosphere. Changes in headspace atmosphere of cheese packs and treatment effects on Lactic Acid Bacteria (LAB) counts and diarrheagenic E. coli strains (aEPEC and STEC) were evaluated over a 28 d storage period. The results demonstrated that the combined treatment exhibited the most significant antimicrobial effect against both strains compared to individual treatments, achieving reductions of 4.30 and 4.80 log cfu/g after 28 d of storage for aEPEC and STEC, respectively. Notably, the synergistic effect of the combination treatment resulted in the complete inactivation of intact cells for STEC and nearly completed inactivation for aEPEC by the end of the storage period. These findings suggest that the combination of HHP with selected hurdles could effectively enhance microbial inactivation capacity, offering promising alternatives for improving cheese safety without affecting the starter microbiota.
•HHP and TO films mitigate pathogenic E. coli (aEPEC and STEC) in ripened cheese.•Synergistic effect achieves significant bacterial reductions.•Complete inactivation of STEC cells is observed.•The applied nonthermal treatments produce minimal impact on starter microbiota.•This hurdle strategy could enhance cheese safety. |
---|---|
ISSN: | 0168-1605 1879-3460 1879-3460 |
DOI: | 10.1016/j.ijfoodmicro.2024.110859 |