Feasible low-carbon technological pathway: Sustainable development strategies in the vanadium titanium steel industry
Steel is an important raw material for human development, and steel emissions are the world's largest source of industrial carbon emissions. Therefore, it is urgent to control carbon emissions in this field and formulate a low-carbon development pathway. However, most of the existing studies fo...
Gespeichert in:
Veröffentlicht in: | Applied energy 2025-02, Vol.379, p.124919, Article 124919 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Steel is an important raw material for human development, and steel emissions are the world's largest source of industrial carbon emissions. Therefore, it is urgent to control carbon emissions in this field and formulate a low-carbon development pathway. However, most of the existing studies focus on the macro level of the steel industry, and there are few studies on industry segmentation. The vanadium titanium steel (VTS) sub-sector is a key area for low-carbon development of steel industry. Achieving carbon neutrality in this sector is crucial for meeting international climate goals. This research takes a leading VTS enterprise as the research object, using carbon accounting and life cycle assessment (LCA) to map emissions across the four sub-units and each smelting stage of the enterprise. The study introduces the LC2MVTS/FP-FB (Low carbon concept model of vanadium titanium steel/four pillars and five beams) framework, which integrates energy, resources, information, and carbon sequestration technology to advance towards carbon neutrality. Based on the conceptual model framework, a feasible low-carbon technology pathway for VTS industry is proposed. Additionally, the research evaluates the LC2MVTS/FP-FB model's reliability and accuracy through the carbon neutrality technology analytic hierarchy process and a fuzzy comprehensive evaluation, offering valuable insights for the VTS industry's sustainable transformation globally.
[Display omitted]
•A leading vanadium titanium steel enterprise was studied as object.•Carbon accounting and LCA analysis was carried out.•A low-carbon technology pathway of VTS industry was proposed.•Technical evaluation methods were implemented. |
---|---|
ISSN: | 0306-2619 |
DOI: | 10.1016/j.apenergy.2024.124919 |