Identifying temperature refuges in Utah using temperature, biota, and habitat data

Understanding where on landscapes to make investments, such as designating protected areas, is a critical component of biodiversity management. Locations for management actions should achieve current management objectives while also having the best chance of continued success in the future. Climate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of wildlife management 2025-01, Vol.89 (1), p.n/a
Hauptverfasser: Hammill, Edd, Berkeley, Lorelle, Lindsey, Sarah, Wheeler, Mindy, Thompson, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding where on landscapes to make investments, such as designating protected areas, is a critical component of biodiversity management. Locations for management actions should achieve current management objectives while also having the best chance of continued success in the future. Climate change has the potential to undermine biodiversity management, as it may lead to substantial changes in environmental conditions that are outside local managers' control. Following changes in environmental conditions, areas on the landscape may become unsuitable for the species or habitats that the initial actions were intended to benefit. The potential for local actions to be undermined by global‐scale threats makes it essential to account for and minimize exposure to temperature change. We present a series of analyses identifying priority areas for wildlife and habitat management. We conducted our analyses using a systematic landscape planning approach that identifies areas within species' ranges or current distributions of key habitats that are predicted to be less affected by future temperature change. We used the ranges of 142 animal and 149 plant species identified as species of greatest conservation need (SGCN) together with the distributions of 14 terrestrial and 19 aquatic key habitats in Utah, USA. We measured temperature change in 2 ways: as changes in mean annual temperature between 2020 and the year 2100 (temperature difference) and by quantifying how far a species range or habitat would have to shift to maintain its current temperature envelope (climate velocity). We identified the sub‐watersheds with hydrologic unit code 12 (HUC 12) that collectively encompassed the ranges of our SGCNs and key habitats while minimizing overall exposure to temperature change. These high priority HUC 12s represented areas that were not only hotspots for SGCNs and key habitats but also acted as temperature refugia, where management actions are likely to be robust to temperature change. We hope that our identification of high‐priority HUC 12s will help inform and guide future management actions to improve their long‐term outcomes. This study identifies priority areas for wildlife and habitat management in Utah that are predicted to be less affected by future temperature changes. By using a systematic landscape planning approach, the research highlights high priority regions that act as temperature refugia, aiming to ensure effective and robust conservation efforts for
ISSN:0022-541X
1937-2817
DOI:10.1002/jwmg.22667