Seasonal variation of canopy vertical structural profiles measured at two temperate forests: intercomparison of tower, mast, crane, and UAV measurements
Key message Evaluated tower, mast, crane, and UAV methods for forest vertical gap fraction, LAI, and CI measurements in different seasons. UAV is promising for forest vertical structural profiling. The vertical distribution of canopy structural parameters, such as canopy gap fraction, leaf area inde...
Gespeichert in:
Veröffentlicht in: | Trees (Berlin, West) West), 2025-02, Vol.39 (1), p.9-9, Article 9 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Key message
Evaluated tower, mast, crane, and UAV methods for forest vertical gap fraction, LAI, and CI measurements in different seasons. UAV is promising for forest vertical structural profiling.
The vertical distribution of canopy structural parameters, such as canopy gap fraction, leaf area index (LAI) and clumping index (CI), is important for understanding the forest structural and functional properties. However, vertically distributed canopy structural data are rare, and current methods are either inefficient or costly for obtaining sufficient amounts of such data. This study conducted a series of field campaigns to obtain forest vertical structural measurements at two temperate forest sites in northern China from 2020 to 2023. Four different measurement systems were compared: (1) flux towers with accessible platforms at different heights, (2) a portable and extensible sampling mast with a digital hemispherical photography (DHP) camera attached on top, (3) a tower crane with a DHP camera fixed on the crane hook, and (4) an uncrewed aerial vehicle (UAV) with a DHP camera attached on top. The measured effective plant area index (PAI
eff
) shows clearly seasonal variations at different heights. The CI remains relatively consistent at different heights, and the leaf-off value is approximately 0.1−0.2 higher than the leaf-on one. The flux tower method can be used for vertical profile measurement at a fixed location, whereas the portable mast is suitable for lower-level ( |
---|---|
ISSN: | 0931-1890 1432-2285 |
DOI: | 10.1007/s00468-024-02589-4 |