Unraveling the effect of high pressure homogenization treatment combined with polyphenols on the improvement of emulsion stability of rice bran oil bodies

The emulsion of rice bran oil body (RBOB) shows potential as an oil-in-water emulsion, but its limited stability restricts broader utilization. In this paper, high pressure homogenization (HPH) treatment combined with resveratrol (RE) was found to increase the stability of RBOB emulsions. The study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food hydrocolloids 2025-03, Vol.160, p.110871, Article 110871
Hauptverfasser: Gao, Fei, Wang, Xu, Han, Xiaoyu, Zhang, Shixiang, Wang, Tong, Yu, Dianyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emulsion of rice bran oil body (RBOB) shows potential as an oil-in-water emulsion, but its limited stability restricts broader utilization. In this paper, high pressure homogenization (HPH) treatment combined with resveratrol (RE) was found to increase the stability of RBOB emulsions. The study demonstrated that the HPH (80 MPa) treatment combined with RE had an enhancing effect on the stability of RBOB. This improvement be attributed to the unfolding and rearrangement of large insoluble protein aggregates into small soluble protein aggregates, increased exposure of amino acid residues, and decreased fluorescence intensity. It was further shown that HPH treatment promoted the non-covalent bonding between RE and RBOB, and improved the surface roughness (Rq, 6.59), contact angle (17.39°), surface hydrophobicity (552.43) and emulsification stability of the oil body emulsions. RE formed a stable interfacial membrane with the OB emulsion when the HPH was 80 MPa, thus further strengthening its antioxidant capacity and facilitating the RBOB to reduce the digestion rate of oil during the gastrointestinal tract digestion process. The results provide a foundation for developing an emulsification system that utilizes the unique structure of plant RBOB. [Display omitted] •The combined treatment of HPH (80 MPa) and RE improved the aggregation of RBOB.•HPH treatment enabled RE to form a stable interfacial film with OB emulsion.•HPH treatment promoted non-covalent binding of RE to surface proteins of the OB.•Improved digestion of oils in the gastrointestinal tract during digestion.
ISSN:0268-005X
DOI:10.1016/j.foodhyd.2024.110871