Indole-3-acetic acid attenuates pulmonary fibrosis by modulating lung microbiota, inhibiting fibroblast activation, and alleviating alveolar epithelial cell senescence

Pulmonary fibrosis (PF) is a relentlessly progressive disorder characterized by high mortality and limited effective therapeutic options. Indole-3-acetic acid (IAA), originally recognized as a plant hormone, is also identified as a tryptophan-derived metabolite catabolized from microbiota in mammals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2024-12, Vol.359, p.123191, Article 123191
Hauptverfasser: Zhuo, Jinzhong, Liu, Dongyu, Yu, Qi, Hu, Minxuan, Huang, Haohua, Chen, Yixin, Li, Yanqun, Gao, Yimei, Chen, Weimou, Meng, Xiaojin, Zou, Fei, Zhang, Jinming, Cai, Shaoxi, Dong, Hangming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulmonary fibrosis (PF) is a relentlessly progressive disorder characterized by high mortality and limited effective therapeutic options. Indole-3-acetic acid (IAA), originally recognized as a plant hormone, is also identified as a tryptophan-derived metabolite catabolized from microbiota in mammals. IAA has exhibited antioxidative, anti-inflammatory, and anti-tumor effects in various disorders, yet its role in PF remains elusive. Bleomycin (BLM) was employed to induce PF in a mouse model. TGF-β1 was utilized in primary mouse lung fibroblasts (pMLFs) to establish a pro-fibrotic in vitro cellular model, and in A549 cells to create an in vitro cellular senescence model. The therapeutic effects of IAA on PF were evaluated using hematoxylin-eosin staining, immunofluorescence staining, western blotting, SA-β-gal assay, and network pharmacology analysis. Additionally, the effect of IAA on lung microbiota of PF was investigated using 16S rRNA gene sequencing analysis. we observed a significant reduction in IAA levels in both PF patients and mouse models. Moreover, we demonstrated the therapeutic potential of IAA in alleviating PF in BLM-induced mouse models, showing a dose-dependent response. Mechanistically, we delineated three perspectives. Firstly, IAA promoted autophagic flux by inhibiting the PI3K/AKT/mTOR pathway, thereby suppressing lung fibroblast differentiation and extracellular matrix (ECM) deposition. Secondly, IAA attenuated alveolar epithelial cell senescence by modulating the PI3K/AKT and HIF-1 pathways. Lastly, IAA displayed the ability to mitigate PF by modulating the structure and composition of lung microbiota. Our study demonstrates that IAA alleviates PF through multiple pathways, highlighting its potential as a therapeutic agent. [Display omitted]
ISSN:0024-3205
1879-0631
1879-0631
DOI:10.1016/j.lfs.2024.123191