Subwavelength nanostructures evolving from hemispherical to spherical shapes for broadband anti-reflection in organic solar cells

We present subwavelength nanostructures with a periodic array that transitions from hemispherical to spherical shapes, achieving efficient broadband anti-reflection (AR) in organic solar cells (OSCs). Optimizing the shapes and geometrical parameters of an antireflective subwavelength nanostructure (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2025-01, Vol.238, p.121908, Article 121908
Hauptverfasser: Lim, Donggyu, Ju, Seongcheol, Kim, Hyeonwoo, Kang, Cheolhun, Kim, Dohyun, Kim, Jeonghyun, Park, Hui Joon, Lee, Kyu-Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present subwavelength nanostructures with a periodic array that transitions from hemispherical to spherical shapes, achieving efficient broadband anti-reflection (AR) in organic solar cells (OSCs). Optimizing the shapes and geometrical parameters of an antireflective subwavelength nanostructure (ARSN) enhances absorption in the active layer across a broad wavelength range through reduced reflection. An OSC integrated with an optimized front-mounted ARSN, featuring a diameter of 100 nm, a spacing of 20 nm, and an aspect ratio of 0.9, achieves a short-circuit current density (JSC) of 27.89 mA/cm2, approximately 8.61 % higher than that of a conventional planar OSC. Additionally, we examine the AR properties of the ARSN by analyzing the optical admittance diagram, following the modeling of the ARSN using the effective medium approximation. This approach can be applied to other wavelength regions and a range of applications, including optoelectronic devices, displays, absorbers, and metasurfaces.
ISSN:0960-1481
DOI:10.1016/j.renene.2024.121908