Mathematical Modeling Using Full Factorial Design Applied in the Adsorption of Dye Basic Blue 9 from Synthetic Aqueous Solutions onto Oryza Sativa Husk-Derived Nano-Silica-Smectic Clay Composite
This study focuses on utilizing Oryza sativa husk (rice husk) to produce a nanosilica-doped smectitic clay (Os-Sm) for the adsorption of Basic Blue 9 from aqueous solutions. Response surface methodology was employed to investigate the impact of dye concentration (10—30 mg/L), initial pH (8—11), and...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2025, Vol.236 (1), p.49-49, Article 49 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study focuses on utilizing Oryza sativa husk (rice husk) to produce a nanosilica-doped smectitic clay (Os-Sm) for the adsorption of Basic Blue 9 from aqueous solutions. Response surface methodology was employed to investigate the impact of dye concentration (10—30 mg/L), initial pH (8—11), and contact time (0—100 min). The regression model exhibited a remarkable predictive capability, accounting for over 99% of the targeted response variation within the specified ranges of the factors (R
2
= 99.98%) with a 95% confidence level. The analysis of variance confirmed the significance and accuracy of the mathematical model, with F-values (1539.08 > > 1) and p-values ( 50 min, and adsorbent dose of 0.5 g/L), approximately 96.33% of the dye was successfully removed. Os-Sm emerges as a promising and efficient alternative for Basic Blue 9 removal in aqueous solutions. |
---|---|
ISSN: | 0049-6979 1573-2932 |
DOI: | 10.1007/s11270-024-07676-3 |