Synchronised removal of nitrogen and sulphate from rubber industrial wastewater by coupling of Sulfammox and sulphide-driven autotrophic denitrification in anaerobic membrane bioreactor
[Display omitted] •AnMBR removed NH4+-N, and SO42−-S simultaneously via Sulfammox and SDAD processes.•SO42− enabled TN removal via Sulfammox, while S2− contributed through SDAD.•Desulfovibrio and Sulfurospirillum microbes led the sulfammox and SDAD processes.•AnMBR showed stable solution of achievin...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2025-01, Vol.416, p.131785, Article 131785 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•AnMBR removed NH4+-N, and SO42−-S simultaneously via Sulfammox and SDAD processes.•SO42− enabled TN removal via Sulfammox, while S2− contributed through SDAD.•Desulfovibrio and Sulfurospirillum microbes led the sulfammox and SDAD processes.•AnMBR showed stable solution of achieving 45% SO42− removal in treating rubber WW.
Global rubber industry, growing 4–6 % annually with 13.76 million Mt of rubber produced in 2019, significantly impacts the economy. This study explores coupling sulfate-dependent ammonium oxidation (Sulfammox) and sulfide-driven autotrophic denitrification (SDAD) within an anaerobic membrane bioreactor (AnMBR) to treat high-strength natural rubber wastewater. Over 225 days, the AnMBR system achieved maximal chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4+-N), and sulfate sulfur (SO42−-S) removal efficiencies of 58 %, 31 %, 13 %, and 45 %, respectively. TN is predominantly removed through Sulfammox (accounting for 49 % of NH4+-N removal), SDAD, and conventional denitrification pathways. Sulfate removal is achieved via Sulfammox (responsible for 43 % of SO42−-S removal), and Dissimilatory sulfate-reducing (DSR) processes (contributing 57 % of SO42−-S removal). Microbial analysis identified Desulfovibrio and Sulfurospirillum as key microbes, while metagenomic analysis highlighted crucial sulfur and nitrogen cycling pathways. The findings support Sulfammox and SDAD as promising eco-friendly strategies for treating ammonia- and sulfate-rich industrial wastewater. |
---|---|
ISSN: | 0960-8524 1873-2976 1873-2976 |
DOI: | 10.1016/j.biortech.2024.131785 |