Construction and demolition waste as a low-cost adsorbent for water treatment: kinetics, isotherm, thermodynamics, and Fenton regeneration

The present study proposes to investigate the feasibility of using construction and demolition waste (CDW) as an aqueous remediation agent through adsorption. The CDW, with and without chemical and thermal pre-activation, was evaluated to remove the methylene blue (MB) dye from the water solution. V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-11, Vol.31 (54), p.62889-62907
Hauptverfasser: Santos, Danilo H. S., Queiroz, Larissa F., Silva Neto, Luiz D., Santos, Keven E., das Neves, Denio D. C. S., Silva, Anamália F., Fonseca, Eduardo J. S., Fernandes, Daniel P., Meili, Lucas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study proposes to investigate the feasibility of using construction and demolition waste (CDW) as an aqueous remediation agent through adsorption. The CDW, with and without chemical and thermal pre-activation, was evaluated to remove the methylene blue (MB) dye from the water solution. Variables interfering with adsorption processes, such as adsorbent dosage, solution pH, and particle size, were evaluated. The material was characterized by pH ZPC , FTIR, XRD, SEM, EDS, and TG. The kinetic and equilibrium data better fitted the Elovich and Sips models, respectively. A maximum adsorption capacity of 18.62 mg g −1 at 60 °C was observed. Thermodynamic data indicated that adsorption occurred through a spontaneous and favorable process governed mainly by physical processes. The regeneration studies were carried out using processes based on the Fenton reaction, where the catalytic action of the iron naturally present in the CDW was evaluated. The results showed that the desorption balance was the main limiting factor for the effective regeneration of the saturated material. Adding Fe 2+ to the system made this process suitable for the regeneration of the CDW and degradation of the pollutant in the aqueous phase. A regeneration efficiency of 65%, maintained practically constant during five adsorption-regeneration cycles, was observed. These results highlight the high potential of using CDWs as an adsorbent material. Graphical abstract
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-35393-1