Tyrosine Hydroxylase Is Required for the Larval–Pupal Transformation and Immunity of Plutella xylostella: Potential for Pest Management

Plutella xylostella has developed high levels of resistance to many commonly used insecticides. Tyrosine hydroxylase (TH) is essential for insect survival; thus, we evaluated whether TH could be a potential target for controlling P. xylostella. In this study, PxTH was identified; further qPCR analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-12, Vol.72 (50), p.27818-27829
Hauptverfasser: Hou, Qiu-Li, Zhang, Han-Qiao, Zhu, Jia-Ni, Chen, Er-Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plutella xylostella has developed high levels of resistance to many commonly used insecticides. Tyrosine hydroxylase (TH) is essential for insect survival; thus, we evaluated whether TH could be a potential target for controlling P. xylostella. In this study, PxTH was identified; further qPCR analysis showed that PxTH increased its expression during larval pupation and was highly expressed in the head and epidermis of prepupa in P. xylostella. Subsequently, we found a significant decrease in insect pupation and eclosion rates after injection of dsPxTH or a feeding diet supplemented with 3-iodo-tyrosine (3-IT) as a TH inhibitor in P. xylostella. Moreover, this study suggested that PxTH enzyme activity and dopamine concentrations were significantly decreased, agreeing with the blockage of larval–pupal cuticle tanning, with thinner puparium and less melanization after feeding 3-IT. In addition, expression levels of four antimicrobial peptide genes were significantly inhibited after P. xylostella feeding with 3-IT, and injection of Escherichia coli resulted in 73.3% mortality, indicating that PxTH was required for immune responses. In summary, these results confirmed that PxTH was involved in the development and immunity of P. xylostella, suggesting a critical potential novel insecticide target for RNAi-based pest control.
ISSN:0021-8561
1520-5118
1520-5118
DOI:10.1021/acs.jafc.4c09279