Biocontrol Ability of Strain Bacillus amyloliquefaciens SQ‑2 against Table Grape Rot Caused by Aspergillus tubingensis

Bacillus amyloliquefaciens strain SQ-2, isolated from a cured product, has been demonstrated to exhibit a highly efficacious performance against phytopathogens, including Stemphylium solani, Fusarium moniliforme, Fusarium graminearum, and Aspergillus tubingensis. In particular, with regard to A. tub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-11, Vol.72 (44), p.24374-24386
Hauptverfasser: Li, Suran, Dai, Shuangshuang, Huang, Lei, Cui, Yumeng, Ying, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacillus amyloliquefaciens strain SQ-2, isolated from a cured product, has been demonstrated to exhibit a highly efficacious performance against phytopathogens, including Stemphylium solani, Fusarium moniliforme, Fusarium graminearum, and Aspergillus tubingensis. In particular, with regard to A. tubingensis, which causes summer bunch rot, SQ-2 has been observed to suppress the mycelial growth of all tested grape cultivars by over 40%. Especially on Kyoho grapes, it has the highest inhibition rate of 53%. Scanning electron microscopy (SEM) confirms that SQ-2 is an effective agent for suppressing the mycelia proliferation, differentiation, and spore formation of A. tubingensis. Furthermore, an LC/MS analysis revealed that SQ-2 produces two principal lipopeptides, namely, bacillibactin and surfactin, in addition to a polyketide, bacillaene. Further analysis through gas chromatography–mass spectrometry (GC/MS) identified 41 distinct volatile organic compounds secreted by SQ-2. Transcriptomic analysis indicated that exposure to the metabolite of SQ-2 induced substantial gene expression alterations in A. tubingensis. These data suggest that B. amyloliquefaciens strain SQ-2 exhibits promising crop protection potential of inhibiting plant pathogens through the secretion of bacillibactin, surfactin, bacillaene, and VOCs.
ISSN:0021-8561
1520-5118
1520-5118
DOI:10.1021/acs.jafc.4c04139