Highly Elastic, Fatigue-Resistant, and Antifreezing MXene Functionalized Organohydrogels as Flexible Pressure Sensors for Human Motion Monitoring
Conductive organohydrogels-based flexible pressure sensors have gained considerable attention in health monitoring, artificial skin, and human-computer interaction due to their excellent biocompatibility, wearability, and versatility. However, hydrogels’ unsatisfactory mechanical and unstable electr...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-11, Vol.16 (46), p.64002-64011 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conductive organohydrogels-based flexible pressure sensors have gained considerable attention in health monitoring, artificial skin, and human-computer interaction due to their excellent biocompatibility, wearability, and versatility. However, hydrogels’ unsatisfactory mechanical and unstable electrical properties hinder their comprehensive application. Herein, an elastic, fatigue-resistant, and antifreezing poly(vinyl alcohol) (PVA)/lipoic acid (LA) organohydrogel with a double-network structure and reversible cross-linking interactions has been designed, and MXene as a conductive filler is functionalized into organohydrogel to further enhance the diverse sensing performance of flexible pressure sensors. The as-fabricated MXene-based PVA/LA organohydrogels (PLBM) exhibit stable fatigue resistance for over 450 cycles under 40% compressive strain, excellent elasticity, antifreezing properties ( |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c12852 |