Diesel exhaust particles inhibit lung branching morphogenesis via the YAP/TAZ pathway
Prenatal exposure to air pollution may associated with inhibition of lung development in the child, however the possible mechanism is unclear. We investigated the effects of traffic-related diesel exhaust particle (DEP) exposure on fetal lung branching morphogenesis and elucidate the possible mechan...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-02, Vol.861, p.160682-160682, Article 160682 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prenatal exposure to air pollution may associated with inhibition of lung development in the child, however the possible mechanism is unclear. We investigated the effects of traffic-related diesel exhaust particle (DEP) exposure on fetal lung branching morphogenesis and elucidate the possible mechanism. Ex vivo fetal lungs collected from ICR mice at an age of 11.5 embryonic (E) days were exposed to DEPs at 0 (control), 10, and 50 μg/mL and branching morphogenesis was measured for 3 days. Normal IMR-90 human fetal lung fibroblast cells were exposed to DEPs at 0 (control), 10, and 50 μg/mL for 24 h. We observed that DEP exposure significantly inhibited lung branching morphogenesis with reduced lung branching ratios and surface areas on day 3. RNA sequencing (RNA-Seq) showed that DEP increased the inflammatory response and impaired lung development-related gene expressions. DEPs significantly decreased Yes-associated protein (YAP), phosphorylated (p)-YAP, transcriptional coactivator with a PDZ-binding motif (TAZ), and p-TAZ in IMR-90 cells at 10 and 50 μg/mL. Treatment of fetal lungs with the YAP inhibitor, PFI-2, also demonstrated restricted lung branching development similar to that of DEP exposure, with a significantly decreased lung branching ratio on day 3. DEP exposure significantly decreased the lung branching modulators fibroblast growth factor receptor 2 (FGFR2), sex-determining region Y-box 2 (SOX2), and SOX9 in IMR-90 cells at 10 and 50 μg/mL. Fetal lung immunofluorescence staining showed that DEP decreased SOX2 expression in fibronectin+ fibroblasts. DEP exposure decreased the cellular senescence regulator, p-sirtuin 1 (SIRT1)/SIRT1 in IMR-90 cells, with RNA-Seq showing impaired telomere maintenance. DEP exposure impaired fetal lung growth during the pseudoglandular stage through dysregulating the Hippo signaling pathway, causing fibroblast lung branching restriction and early senescence. Prenatal exposure to traffic-related air pollution has adverse effects on fetal lung development.
[Display omitted]
•DEP decreased fetal lung branching morphogenesis and dysregulated gene expressions.•DEP reduced fibroblast lung branching and airway growth expression by Hippo pathway.•YAP inhibitor induced restriction of lung growth morphogenesis.•DEP decreased YAP in fibroblast leading to fetal lung morphogenesis inhibition.•DEP induced senescence and telomere damage in fibroblasts of fetal lungs. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2022.160682 |