Citizen-Based Water Quality Monitoring: Field Testing a User-Friendly Sensor for Phosphate Detection in Global Surface Waters

Widespread concern over surface water pollution has led to interest in developing easy-to-use accurate tools for citizen-based measurements that provide high spatial and temporal resolution while maintaining accuracy. Excessive anthropogenic phosphate significantly contributes to global eutrophicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-11, Vol.96 (46), p.18369-18376
Hauptverfasser: Aryal, Prakash, Hefner, Claire E., Martinez, Brandaise, Brack, Eric, Henry, Charles S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Widespread concern over surface water pollution has led to interest in developing easy-to-use accurate tools for citizen-based measurements that provide high spatial and temporal resolution while maintaining accuracy. Excessive anthropogenic phosphate significantly contributes to global eutrophication and necessitates regular on-site phosphate monitoring in surface waters. Traditional instrumentation for quantifying phosphate is labor-intensive, expensive, and performed in laboratories. Existing on-site testing methods relying on phosphomolybdenum blue (PMB) have limited sensitivity and stability under ambient conditions. To overcome these limitations, a novel low-cost, rapid, and user-friendly sensor for citizen-led phosphate monitoring in surface water is introduced and demonstrated with a global sampling campaign. The fast-flow microfluidic device provides user-friendly operation, achieving an environmentally relevant limit of detection (LoD) of 190 ppb, which is near the EPA-recommended maximum for phosphate. The dip-and-read operation reduces procedural steps while delivering accurate sample volume, making it well-suited for citizen-led science initiatives. This sensor exhibits high selectivity and prolonged stability for two months under ambient conditions. The sensor’s performance was validated using the industry-standard UV–Vis method with 90% correlation. More than 1000 sensors were deployed in different continents, facilitating phosphate mapping in diverse water sources across multiple continents. The initiative covered much of the globe, including Thailand, Nepal, Brazil, Chile, the USA, and Germany. In some cases, phosphate levels exceeded legislative guidelines by 100-fold. Through the collaboration of citizen scientists, we analyzed regional topography and socioeconomic practices near water sources, identifying potential sources that could contribute to eutrophication in these areas.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c02123