Performance assessment of ammonia as a turbofan engine fuel during various altitude levels

This research is focused on analysing the thermodynamic performance outcomes of the ammonia-fueled turbofan engine. The assessment contains exergy sustainability, economic aspects, environmental impact, and energy and exergy analysis at take-off, climb-out, climb and cruise levels. The required math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2024-11, Vol.308, p.132714, Article 132714
Hauptverfasser: Oğur, Emine, Koç, Ali, Köse, Özkan, Koç, Yıldız, Yağlı, Hüseyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research is focused on analysing the thermodynamic performance outcomes of the ammonia-fueled turbofan engine. The assessment contains exergy sustainability, economic aspects, environmental impact, and energy and exergy analysis at take-off, climb-out, climb and cruise levels. The required mathematical modelling for thermodynamic analysis of the turbofan engine was performed with Engineering Equation Solver (EES) software. Then it was calculated how much improvement could be achieved in the amount of emissions that occur in the case of using ammonia and kerosene. It was determined that the combustion chamber (CC) has the greatest improvement potential of the turbofan. The maximum productivity lack rate (83.87 %) was determined in the CC at the cruise level, minimum productivity lack rate (0.72 %) was found to be the LPC at the same level. During the take-off level, the turbofan engine had the highest energetic and exergetic fuel costs, reaching 37138.38 $/h and 34195.78 $/h, respectively. The highest specific fuel consumption (85.602 kg/kN.h), thermal efficiency (53.78 %) and thrust efficiency (40.29 %) of the turbofan engine using ammonia as fuel carried out at the take-off level. Eventually, the maximum carbon dioxide emission reduction was calculated as 43.84 tonCO2/h when compared to kerosene fuel. •Thermodynamic performance outputs for ammonia-fueled turbofan were evaluated.•SFC, thrust and thrust power were conducted for all altitude levels.•Exergy sustainability and economic analyses for each component were performed.•Environmental analyses for each component were investigated.•CO2 Emission outputs were compared with the kerosene fuel.
ISSN:0360-5442
DOI:10.1016/j.energy.2024.132714