The mechanistic interplay between Nrf-2, NF-κB/MAPK, caspase-dependent apoptosis, and autophagy in the hepatoprotective effects of Sophorolipids produced by microbial conversion of banana peels using Saccharomyces cerevisiae against doxorubicin-induced hepatotoxicity in rats
Doxorubicin (DOX) is a well-known chemotherapeutic agent which causes serious adverse effects due to multiple organ damage, including cardiotoxicity, nephrotoxicity, neurotoxicity, and hepatotoxicity. The mechanism of DOX-induced organ toxicity might be attributed to oxidative stress (OS) and, conse...
Gespeichert in:
Veröffentlicht in: | Food and chemical toxicology 2023-12, Vol.182, p.114119-114119, Article 114119 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doxorubicin (DOX) is a well-known chemotherapeutic agent which causes serious adverse effects due to multiple organ damage, including cardiotoxicity, nephrotoxicity, neurotoxicity, and hepatotoxicity. The mechanism of DOX-induced organ toxicity might be attributed to oxidative stress (OS) and, consequently, activation of inflammatory signaling pathways, apoptosis, and blockage of autophagy. Sophorolipids (SLs) as a glycolipid type of biosurfactants, are natural products that have unique properties and a wide range of applications attributed to their antioxidant and anti-inflammatory properties.
Production of low-cost SLs from Saccharomyces cerevisiae grown on banana peels and investigating their possible protective effects against DOX-induced hepatotoxicity.
The yeast was locally isolated and molecularly identified, then the yielded SLs were characterized by FTIR,
H NMR and LC-MS/MS spectra. Posteriorly, thirty-two male Wistar rats were randomly divided into four groups; control (oral saline), SLs (200 mg/kg, p.o), DOX (10 mg/kg; i.p.), and SL + DOX (200 mg/kg p.o.,10 mg/kg; i.p., respectively). Liver function tests (LFTs), oxidative stress, inflammatory, apoptosis as well as autophagy markers were investigated.
SLs were produced with a yield of 49.04% and treatment with SLs improved LFTs, enhanced Nrf2 and suppressed NF-κB, IL-6, IL-1β, p38, caspase 3 and Bax/Bcl2 ratio in addition to promotion of autophagy when compared to DOX group.
Our results revealed a novel promising protective effect of SLs against DOX-induced hepatotoxicity in rats. |
---|---|
ISSN: | 0278-6915 1873-6351 |
DOI: | 10.1016/j.fct.2023.114119 |