Unlocking Green Solutions: Cellulose as a Lucrative Heavy Metal Adsorbent in Wastewater Treatment-A Comprehensive Review

Human activities across domestic, commercial, and industrial sectors have significantly contributed to the accumulation of pollutants, including heavy metals, inorganic and organic compounds, and dyes, in aquatic environments. To improve water quality, it is crucial to develop a sustainable treatmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2024-12, Vol.235 (12), p.806-806, Article 806
Hauptverfasser: Mishra, Priyanka P., Mohanty, Chirasmayee, Das, Nigamananda, Mishra, Manjusri, Mohanty, Amar K., Manna, Suvendu, Behera, Ajaya K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human activities across domestic, commercial, and industrial sectors have significantly contributed to the accumulation of pollutants, including heavy metals, inorganic and organic compounds, and dyes, in aquatic environments. To improve water quality, it is crucial to develop a sustainable treatment method for the removal of these contaminants. Modifying cellulose by adding functional groups to its structure enhances its inherent properties which improves its ability to sorb heavy metals. This study focuses on current research into the effectiveness of cellulose as a sorbent for the eradication of heavy metals from effluents. The literature review indicates that modified cellulose-based sorbents are more promising than unmodified cellulose for the heavy metal elimination process. However, to optimize the wastewater treatment process further, it is necessary to explore effective methods such as tempo-oxidation, grafting, esterification, and electrospinning for producing more effective cellulose-based adsorbents and assessing their scalability in industrial applications.
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-024-07636-x