Fabrication of affinity-based drug delivery systems based on electrospun chitosan sulfate/poly(vinyl alcohol) nanofibrous mats

Benign electrospinning of chitosan in aqueous medium is an open challenge mainly due to its insolubility in neutral pH and inter- and intramolecular hydrogen bonding interactions. Here, we developed a simple and widely-used methodology to improve the chitosan electrospinnability through the sulfatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-12, Vol.252, p.126438-126438, Article 126438
Hauptverfasser: Shiravandi, Ayoub, Ashtiani, Mohammad Kazemi, Daemi, Hamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Benign electrospinning of chitosan in aqueous medium is an open challenge mainly due to its insolubility in neutral pH and inter- and intramolecular hydrogen bonding interactions. Here, we developed a simple and widely-used methodology to improve the chitosan electrospinnability through the sulfation of chitosan and its further mixing with poly(vinyl alcohol) for the first time. The FTIR, 1H NMR and elemental analyses showed the successful sulfation of chitosan. Furthermore, the viscosity and electrical conductivity measurements revealed the high solubility of chitosan sulfate (CS) in aqueous media. In the next step, a uniform electrospun nanofibrous mat of CS/PVA was fabricated with a fiber diameter ranging from 90 to 340 nm. The crosslinked CS/PVA (50/50) nanofibrous mat as the optimum sample showed a swelling ratio of 290 ± 4 % and a high Young's modulus of 3.75 ± 0.10 GPa. Finally, malachite green (MG) as a cationic drug model was loaded into different samples of chitosan film, CS film, and CS/PVA (50/50) nanofibrous mat and its release behavior was studied. The results of these analyses revealed that the CS/PVA (50/50) nanofibrous mat can successfully load higher contents of the MG and also release it in a sustained manner.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.126438