An overview of approaches for reducing uncertainties in hydrological forecasting: Progress and challenges
Uncertainty plays a key role in hydrological modeling and forecasting, which can have tremendous environmental, economic, and social impacts. Therefore, it is crucial to comprehend the nature of this uncertainty and identify its scope and effects in a way that enhances hydrological modeling and fore...
Gespeichert in:
Veröffentlicht in: | Earth-science reviews 2024-11, Vol.258, p.104956, Article 104956 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uncertainty plays a key role in hydrological modeling and forecasting, which can have tremendous environmental, economic, and social impacts. Therefore, it is crucial to comprehend the nature of this uncertainty and identify its scope and effects in a way that enhances hydrological modeling and forecasting. During recent decades, hydrological researchers investigated several approaches for reducing inherent uncertainty considering the limitations of sensor measurement, calibration, parameter setting, model conceptualization, and validation. Nevertheless, the scope and diversity of applications and methodologies, sometimes brought from other disciplines, call for an extensive review of the state-of-the-art in this field in a way that promotes a holistic view of the proposed concepts and provides textbook-like guidelines to hydrology researchers and the community. This paper contributes to this goal where a systematic review of the last decade's research (2010 onward) is carried out. It aims to synthesize the theories and tools for uncertainty reduction in surface hydrological forecasting, providing insights into the limitations of the current state-of-the-art and laying down foundations for future research. A special focus on remote sensing and multi-criteria-based approaches has been considered. In addition, the paper reviews the current state of uncertainty ontology in hydrological studies and provides new categorizations of the reviewed techniques. Finally, a set of freely accessible remotely sensed data and tools useful for uncertainty handling and hydrological forecasting are reviewed and pointed out. |
---|---|
ISSN: | 0012-8252 |
DOI: | 10.1016/j.earscirev.2024.104956 |