Developing a low-carbon, scalable strategy for the conversion of spent batteries into metal-organic framework-74 for CO2 capture
The growing demand for upgraded electronic products has resulted in a significant amount of waste batteries. In this paper, we propose a low-carbon, scalable mechanochemical waste-to-value strategy to convert spent ZnO from alkaline batteries into Zn-MOF-74, a functional metal–organic framework (MOF...
Gespeichert in:
Veröffentlicht in: | Resources, conservation and recycling conservation and recycling, 2024-10, Vol.209, p.107707, Article 107707 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growing demand for upgraded electronic products has resulted in a significant amount of waste batteries. In this paper, we propose a low-carbon, scalable mechanochemical waste-to-value strategy to convert spent ZnO from alkaline batteries into Zn-MOF-74, a functional metal–organic framework (MOF), for CO2 capture. The conversion pathway of ZnO-to-MOF-74 was investigated via structural characterization techniques. Compared with commercial ZnO with a hexagonal prism-like morphology, spent ZnO, exhibiting a rod-shaped morphology, demonstrated greater readiness in transforming into Zn-MOF-74, completing the transformation in nearly 5 h via ball milling and reducing energy consumption by around 50%. Moreover, the CO2 adsorption capacity of Zn-MOF-74 synthesized using spent ZnO, which is 2.07 mmol/g (at 273 K), is nearly triple that synthesized from commercial ZnO that has a hexagonal prism-shaped morphology. Overall, this study highlights the potential of repurposing spent ZnO in waste valorization, thereby significantly contributing to the advancement of a circular economy.
[Display omitted] |
---|---|
ISSN: | 0921-3449 |
DOI: | 10.1016/j.resconrec.2024.107707 |