Automatically showing microbial growth kinetics with a high-performance microbial growth analyzer

It is difficult to show microbial growth kinetics online when they grow in complex matrices. We presented a novel strategy to address this challenge by developing a high-performance microbial growth analyzer (HPMGA), which employed a unique 32-channel capacitively coupled contactless conductivity de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2023-11, Vol.239, p.115626-115626, Article 115626
Hauptverfasser: Zhang, Xuzhi, Yang, Qianqian, Ma, Liangyu, Zhang, Dahai, Lin, Wentao, Schlensky, Nick, Cheng, Hongrui, Zheng, Yuanhui, Luo, Xiliang, Ding, Caifeng, Zhang, Yan, Hou, Xiangyi, Lu, Feng, Yan, Hua, Wang, Ruoju, Li, Chen-Zhong, Qu, Keming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115626
container_issue
container_start_page 115626
container_title Biosensors & bioelectronics
container_volume 239
creator Zhang, Xuzhi
Yang, Qianqian
Ma, Liangyu
Zhang, Dahai
Lin, Wentao
Schlensky, Nick
Cheng, Hongrui
Zheng, Yuanhui
Luo, Xiliang
Ding, Caifeng
Zhang, Yan
Hou, Xiangyi
Lu, Feng
Yan, Hua
Wang, Ruoju
Li, Chen-Zhong
Qu, Keming
description It is difficult to show microbial growth kinetics online when they grow in complex matrices. We presented a novel strategy to address this challenge by developing a high-performance microbial growth analyzer (HPMGA), which employed a unique 32-channel capacitively coupled contactless conductivity detector as a sensing element and fixed with a CellStatz software. It was capable of online showing accurate and repeatable growth curves of well-dispersed and bad-dispersed microbes, whether they grew in homogeneous simple culture broth or heterogeneous complex matrices. Moreover, it could automatically report key growth kinetics parameters. In comparison to optical density (OD), plate counting and broth microdilution (BMD) methods, we demonstrated its practicability in five scenarios: 1) the illustration of the growth, growth rate, and acceleration curves of Escherichia coli (E. coli); 2) the antimicrobial susceptibility testing (AST) of Oxacillin against Staphylococcus aureus (S. aureus); 3) the determination of Ag nanoparticle toxicity on Providencia rettgeri (P. rettgeri); 4) the characterization of milk fermentation; and 5) the enumeration of viable pathogenic Vibrio in shrimp body. Results highlighted that the HPMGA method had the advantages of universality and effectivity. This technology would significantly facilitate the routine analysis of microbial growth in many fields (biology, medicine, clinic, life, food, environment, and ecology), paving an avenue for microbiologists to achieve research goals that have been inhibited for years due to a lack of practical analytical methods. Based on a unique 32-channel capacitively coupled contactless conductivity detector and novel algorithms, the high-performance microbial growth analyzer (HPMGA) was capable of online showing the growth curves of well-dispersed and bad-dispersed microorganisms (e.g. E. coli, S. aureus, L. bulgaricus, P. rettgeri, and pathogenic Vibrio (flora)), whether they grew in homogeneous simple culture broth or heterogeneous complex matrices (e.g. blood, sewage sludge, milk, and shrimp bodies). Moreover, it could decompose the growth curves into growth rate and growth acceleration curves, and report key growth kinetics parameters. [Display omitted]
doi_str_mv 10.1016/j.bios.2023.115626
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154159401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566323005687</els_id><sourcerecordid>3154159401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-dabec1571eb775556a81ee5c2cefe1b9adf7e3ffe271ebbfe5931fed6cb809453</originalsourceid><addsrcrecordid>eNqFkE1LxDAQQIMouK7-AU89emnNR5M24GVZ_IIFL3oOaTrZZm2bNem6rL_elvUm6GkYeG9gHkLXBGcEE3G7ySrnY0YxZRkhXFBxgmakLFiaU8ZP0QxLLlIuBDtHFzFuMMYFkXiG9GI3-E4Pzui2PSSx8XvXr5POmeArp9tkHfx-aJJ318MIxWTvxk0njVs36RaC9aHTvYHfhu51e_iCcInOrG4jXP3MOXp7uH9dPqWrl8fn5WKVGibEkNa6AkN4QaAqCs650CUB4IYasEAqqWtbALMW6IRUFrhkxEItTFVimXM2RzfHu9vgP3YQB9W5aKBtdQ9-FxUjPCdc5pj8i9KSl7IsuCxGlB7R8bsYA1i1Da7T4aAIVlN6tVFTejWlV8f0o3R3lGD899NBUNE4GCvVLoAZVO3dX_o3EeOQCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858987597</pqid></control><display><type>article</type><title>Automatically showing microbial growth kinetics with a high-performance microbial growth analyzer</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Xuzhi ; Yang, Qianqian ; Ma, Liangyu ; Zhang, Dahai ; Lin, Wentao ; Schlensky, Nick ; Cheng, Hongrui ; Zheng, Yuanhui ; Luo, Xiliang ; Ding, Caifeng ; Zhang, Yan ; Hou, Xiangyi ; Lu, Feng ; Yan, Hua ; Wang, Ruoju ; Li, Chen-Zhong ; Qu, Keming</creator><creatorcontrib>Zhang, Xuzhi ; Yang, Qianqian ; Ma, Liangyu ; Zhang, Dahai ; Lin, Wentao ; Schlensky, Nick ; Cheng, Hongrui ; Zheng, Yuanhui ; Luo, Xiliang ; Ding, Caifeng ; Zhang, Yan ; Hou, Xiangyi ; Lu, Feng ; Yan, Hua ; Wang, Ruoju ; Li, Chen-Zhong ; Qu, Keming</creatorcontrib><description>It is difficult to show microbial growth kinetics online when they grow in complex matrices. We presented a novel strategy to address this challenge by developing a high-performance microbial growth analyzer (HPMGA), which employed a unique 32-channel capacitively coupled contactless conductivity detector as a sensing element and fixed with a CellStatz software. It was capable of online showing accurate and repeatable growth curves of well-dispersed and bad-dispersed microbes, whether they grew in homogeneous simple culture broth or heterogeneous complex matrices. Moreover, it could automatically report key growth kinetics parameters. In comparison to optical density (OD), plate counting and broth microdilution (BMD) methods, we demonstrated its practicability in five scenarios: 1) the illustration of the growth, growth rate, and acceleration curves of Escherichia coli (E. coli); 2) the antimicrobial susceptibility testing (AST) of Oxacillin against Staphylococcus aureus (S. aureus); 3) the determination of Ag nanoparticle toxicity on Providencia rettgeri (P. rettgeri); 4) the characterization of milk fermentation; and 5) the enumeration of viable pathogenic Vibrio in shrimp body. Results highlighted that the HPMGA method had the advantages of universality and effectivity. This technology would significantly facilitate the routine analysis of microbial growth in many fields (biology, medicine, clinic, life, food, environment, and ecology), paving an avenue for microbiologists to achieve research goals that have been inhibited for years due to a lack of practical analytical methods. Based on a unique 32-channel capacitively coupled contactless conductivity detector and novel algorithms, the high-performance microbial growth analyzer (HPMGA) was capable of online showing the growth curves of well-dispersed and bad-dispersed microorganisms (e.g. E. coli, S. aureus, L. bulgaricus, P. rettgeri, and pathogenic Vibrio (flora)), whether they grew in homogeneous simple culture broth or heterogeneous complex matrices (e.g. blood, sewage sludge, milk, and shrimp bodies). Moreover, it could decompose the growth curves into growth rate and growth acceleration curves, and report key growth kinetics parameters. [Display omitted]</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2023.115626</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>absorbance ; antibiotic resistance ; biosensors ; Capacitively coupled contactless conductivity detector ; Complex matrices ; computer software ; culture media ; ecology ; Escherichia coli ; fermentation ; growth models ; High-performance microbial growth analyzer ; medicine ; microbial growth ; Microbial growth curve ; milk ; minimum inhibitory concentration ; nanosilver ; Online monitoring ; oxacillin ; Practicability ; Providencia rettgeri ; shrimp ; Staphylococcus aureus ; toxicity ; Vibrio</subject><ispartof>Biosensors &amp; bioelectronics, 2023-11, Vol.239, p.115626-115626, Article 115626</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-dabec1571eb775556a81ee5c2cefe1b9adf7e3ffe271ebbfe5931fed6cb809453</citedby><cites>FETCH-LOGICAL-c366t-dabec1571eb775556a81ee5c2cefe1b9adf7e3ffe271ebbfe5931fed6cb809453</cites><orcidid>0009-0004-9669-5915 ; 0000-0001-6075-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566323005687$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Xuzhi</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Ma, Liangyu</creatorcontrib><creatorcontrib>Zhang, Dahai</creatorcontrib><creatorcontrib>Lin, Wentao</creatorcontrib><creatorcontrib>Schlensky, Nick</creatorcontrib><creatorcontrib>Cheng, Hongrui</creatorcontrib><creatorcontrib>Zheng, Yuanhui</creatorcontrib><creatorcontrib>Luo, Xiliang</creatorcontrib><creatorcontrib>Ding, Caifeng</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Hou, Xiangyi</creatorcontrib><creatorcontrib>Lu, Feng</creatorcontrib><creatorcontrib>Yan, Hua</creatorcontrib><creatorcontrib>Wang, Ruoju</creatorcontrib><creatorcontrib>Li, Chen-Zhong</creatorcontrib><creatorcontrib>Qu, Keming</creatorcontrib><title>Automatically showing microbial growth kinetics with a high-performance microbial growth analyzer</title><title>Biosensors &amp; bioelectronics</title><description>It is difficult to show microbial growth kinetics online when they grow in complex matrices. We presented a novel strategy to address this challenge by developing a high-performance microbial growth analyzer (HPMGA), which employed a unique 32-channel capacitively coupled contactless conductivity detector as a sensing element and fixed with a CellStatz software. It was capable of online showing accurate and repeatable growth curves of well-dispersed and bad-dispersed microbes, whether they grew in homogeneous simple culture broth or heterogeneous complex matrices. Moreover, it could automatically report key growth kinetics parameters. In comparison to optical density (OD), plate counting and broth microdilution (BMD) methods, we demonstrated its practicability in five scenarios: 1) the illustration of the growth, growth rate, and acceleration curves of Escherichia coli (E. coli); 2) the antimicrobial susceptibility testing (AST) of Oxacillin against Staphylococcus aureus (S. aureus); 3) the determination of Ag nanoparticle toxicity on Providencia rettgeri (P. rettgeri); 4) the characterization of milk fermentation; and 5) the enumeration of viable pathogenic Vibrio in shrimp body. Results highlighted that the HPMGA method had the advantages of universality and effectivity. This technology would significantly facilitate the routine analysis of microbial growth in many fields (biology, medicine, clinic, life, food, environment, and ecology), paving an avenue for microbiologists to achieve research goals that have been inhibited for years due to a lack of practical analytical methods. Based on a unique 32-channel capacitively coupled contactless conductivity detector and novel algorithms, the high-performance microbial growth analyzer (HPMGA) was capable of online showing the growth curves of well-dispersed and bad-dispersed microorganisms (e.g. E. coli, S. aureus, L. bulgaricus, P. rettgeri, and pathogenic Vibrio (flora)), whether they grew in homogeneous simple culture broth or heterogeneous complex matrices (e.g. blood, sewage sludge, milk, and shrimp bodies). Moreover, it could decompose the growth curves into growth rate and growth acceleration curves, and report key growth kinetics parameters. [Display omitted]</description><subject>absorbance</subject><subject>antibiotic resistance</subject><subject>biosensors</subject><subject>Capacitively coupled contactless conductivity detector</subject><subject>Complex matrices</subject><subject>computer software</subject><subject>culture media</subject><subject>ecology</subject><subject>Escherichia coli</subject><subject>fermentation</subject><subject>growth models</subject><subject>High-performance microbial growth analyzer</subject><subject>medicine</subject><subject>microbial growth</subject><subject>Microbial growth curve</subject><subject>milk</subject><subject>minimum inhibitory concentration</subject><subject>nanosilver</subject><subject>Online monitoring</subject><subject>oxacillin</subject><subject>Practicability</subject><subject>Providencia rettgeri</subject><subject>shrimp</subject><subject>Staphylococcus aureus</subject><subject>toxicity</subject><subject>Vibrio</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQQIMouK7-AU89emnNR5M24GVZ_IIFL3oOaTrZZm2bNem6rL_elvUm6GkYeG9gHkLXBGcEE3G7ySrnY0YxZRkhXFBxgmakLFiaU8ZP0QxLLlIuBDtHFzFuMMYFkXiG9GI3-E4Pzui2PSSx8XvXr5POmeArp9tkHfx-aJJ318MIxWTvxk0njVs36RaC9aHTvYHfhu51e_iCcInOrG4jXP3MOXp7uH9dPqWrl8fn5WKVGibEkNa6AkN4QaAqCs650CUB4IYasEAqqWtbALMW6IRUFrhkxEItTFVimXM2RzfHu9vgP3YQB9W5aKBtdQ9-FxUjPCdc5pj8i9KSl7IsuCxGlB7R8bsYA1i1Da7T4aAIVlN6tVFTejWlV8f0o3R3lGD899NBUNE4GCvVLoAZVO3dX_o3EeOQCg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Xuzhi</creator><creator>Yang, Qianqian</creator><creator>Ma, Liangyu</creator><creator>Zhang, Dahai</creator><creator>Lin, Wentao</creator><creator>Schlensky, Nick</creator><creator>Cheng, Hongrui</creator><creator>Zheng, Yuanhui</creator><creator>Luo, Xiliang</creator><creator>Ding, Caifeng</creator><creator>Zhang, Yan</creator><creator>Hou, Xiangyi</creator><creator>Lu, Feng</creator><creator>Yan, Hua</creator><creator>Wang, Ruoju</creator><creator>Li, Chen-Zhong</creator><creator>Qu, Keming</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0004-9669-5915</orcidid><orcidid>https://orcid.org/0000-0001-6075-7089</orcidid></search><sort><creationdate>20231101</creationdate><title>Automatically showing microbial growth kinetics with a high-performance microbial growth analyzer</title><author>Zhang, Xuzhi ; Yang, Qianqian ; Ma, Liangyu ; Zhang, Dahai ; Lin, Wentao ; Schlensky, Nick ; Cheng, Hongrui ; Zheng, Yuanhui ; Luo, Xiliang ; Ding, Caifeng ; Zhang, Yan ; Hou, Xiangyi ; Lu, Feng ; Yan, Hua ; Wang, Ruoju ; Li, Chen-Zhong ; Qu, Keming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-dabec1571eb775556a81ee5c2cefe1b9adf7e3ffe271ebbfe5931fed6cb809453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>absorbance</topic><topic>antibiotic resistance</topic><topic>biosensors</topic><topic>Capacitively coupled contactless conductivity detector</topic><topic>Complex matrices</topic><topic>computer software</topic><topic>culture media</topic><topic>ecology</topic><topic>Escherichia coli</topic><topic>fermentation</topic><topic>growth models</topic><topic>High-performance microbial growth analyzer</topic><topic>medicine</topic><topic>microbial growth</topic><topic>Microbial growth curve</topic><topic>milk</topic><topic>minimum inhibitory concentration</topic><topic>nanosilver</topic><topic>Online monitoring</topic><topic>oxacillin</topic><topic>Practicability</topic><topic>Providencia rettgeri</topic><topic>shrimp</topic><topic>Staphylococcus aureus</topic><topic>toxicity</topic><topic>Vibrio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuzhi</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Ma, Liangyu</creatorcontrib><creatorcontrib>Zhang, Dahai</creatorcontrib><creatorcontrib>Lin, Wentao</creatorcontrib><creatorcontrib>Schlensky, Nick</creatorcontrib><creatorcontrib>Cheng, Hongrui</creatorcontrib><creatorcontrib>Zheng, Yuanhui</creatorcontrib><creatorcontrib>Luo, Xiliang</creatorcontrib><creatorcontrib>Ding, Caifeng</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Hou, Xiangyi</creatorcontrib><creatorcontrib>Lu, Feng</creatorcontrib><creatorcontrib>Yan, Hua</creatorcontrib><creatorcontrib>Wang, Ruoju</creatorcontrib><creatorcontrib>Li, Chen-Zhong</creatorcontrib><creatorcontrib>Qu, Keming</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuzhi</au><au>Yang, Qianqian</au><au>Ma, Liangyu</au><au>Zhang, Dahai</au><au>Lin, Wentao</au><au>Schlensky, Nick</au><au>Cheng, Hongrui</au><au>Zheng, Yuanhui</au><au>Luo, Xiliang</au><au>Ding, Caifeng</au><au>Zhang, Yan</au><au>Hou, Xiangyi</au><au>Lu, Feng</au><au>Yan, Hua</au><au>Wang, Ruoju</au><au>Li, Chen-Zhong</au><au>Qu, Keming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatically showing microbial growth kinetics with a high-performance microbial growth analyzer</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>239</volume><spage>115626</spage><epage>115626</epage><pages>115626-115626</pages><artnum>115626</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>It is difficult to show microbial growth kinetics online when they grow in complex matrices. We presented a novel strategy to address this challenge by developing a high-performance microbial growth analyzer (HPMGA), which employed a unique 32-channel capacitively coupled contactless conductivity detector as a sensing element and fixed with a CellStatz software. It was capable of online showing accurate and repeatable growth curves of well-dispersed and bad-dispersed microbes, whether they grew in homogeneous simple culture broth or heterogeneous complex matrices. Moreover, it could automatically report key growth kinetics parameters. In comparison to optical density (OD), plate counting and broth microdilution (BMD) methods, we demonstrated its practicability in five scenarios: 1) the illustration of the growth, growth rate, and acceleration curves of Escherichia coli (E. coli); 2) the antimicrobial susceptibility testing (AST) of Oxacillin against Staphylococcus aureus (S. aureus); 3) the determination of Ag nanoparticle toxicity on Providencia rettgeri (P. rettgeri); 4) the characterization of milk fermentation; and 5) the enumeration of viable pathogenic Vibrio in shrimp body. Results highlighted that the HPMGA method had the advantages of universality and effectivity. This technology would significantly facilitate the routine analysis of microbial growth in many fields (biology, medicine, clinic, life, food, environment, and ecology), paving an avenue for microbiologists to achieve research goals that have been inhibited for years due to a lack of practical analytical methods. Based on a unique 32-channel capacitively coupled contactless conductivity detector and novel algorithms, the high-performance microbial growth analyzer (HPMGA) was capable of online showing the growth curves of well-dispersed and bad-dispersed microorganisms (e.g. E. coli, S. aureus, L. bulgaricus, P. rettgeri, and pathogenic Vibrio (flora)), whether they grew in homogeneous simple culture broth or heterogeneous complex matrices (e.g. blood, sewage sludge, milk, and shrimp bodies). Moreover, it could decompose the growth curves into growth rate and growth acceleration curves, and report key growth kinetics parameters. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.bios.2023.115626</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0004-9669-5915</orcidid><orcidid>https://orcid.org/0000-0001-6075-7089</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2023-11, Vol.239, p.115626-115626, Article 115626
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_3154159401
source Elsevier ScienceDirect Journals
subjects absorbance
antibiotic resistance
biosensors
Capacitively coupled contactless conductivity detector
Complex matrices
computer software
culture media
ecology
Escherichia coli
fermentation
growth models
High-performance microbial growth analyzer
medicine
microbial growth
Microbial growth curve
milk
minimum inhibitory concentration
nanosilver
Online monitoring
oxacillin
Practicability
Providencia rettgeri
shrimp
Staphylococcus aureus
toxicity
Vibrio
title Automatically showing microbial growth kinetics with a high-performance microbial growth analyzer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatically%20showing%20microbial%20growth%20kinetics%20with%20a%20high-performance%20microbial%20growth%20analyzer&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Zhang,%20Xuzhi&rft.date=2023-11-01&rft.volume=239&rft.spage=115626&rft.epage=115626&rft.pages=115626-115626&rft.artnum=115626&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2023.115626&rft_dat=%3Cproquest_cross%3E3154159401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858987597&rft_id=info:pmid/&rft_els_id=S0956566323005687&rfr_iscdi=true