A cutting–edge approach to remove arsenic contents from ground water via sulfur doped copper ferrites (S–CuFe2O4)
Pure water is necessary for healthy life; however natural ground water has many toxic metals. Before drinking, it must be free from toxic metals that commonly causes cancer. For example, arsenic is hazardous element but unfortunately it is naturally present in ground water. Due to its high solubilit...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2024-11, Vol.370, p.122759, Article 122759 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pure water is necessary for healthy life; however natural ground water has many toxic metals. Before drinking, it must be free from toxic metals that commonly causes cancer. For example, arsenic is hazardous element but unfortunately it is naturally present in ground water. Due to its high solubility, removal of arsenic from water is not easy. In recent decades, presence of arsenic in ground water has been reported in many areas of Pakistan. Purpose of current project is to estimate and eliminate arsenic contents from the ground drinking water of Tribal Belt of DG Khan. For the comprehensive survey, 200 water samples were collected from the areas where large proportion of ground water is being consumed for drinking. In this work, relatively cheaper and effective adsorbent namely S‒CuFe2O4 have been synthesized for the quick removal of arsenic. Arsenic contents were converted to the arsenomolybdate complex (AMC) and this complex was then adsorbed on S‒CuFe2O4. Morphology and chemical characteristics have been evaluated via XRD, SEM, FT-IR, Raman, TGA, EDX, AFM and XPS techniques. Additionally, various kinetic models were employed to confirm and validate the adsorption phenomena. Based on the results and assessment, it has been concluded that 1.5 g of aforementioned adsorbent is adequate to deliver 432 gal of arsenic free water.
[Display omitted]
•Synthesis of effective and relatively cheaper adsorbents i.e., S-CuFe2O4.•Arsenic removal in the form of arsenomolybdate complex.•Adsorption studies via kinetic, thermodynamics and mechanistic approaches.•Survey and awareness about arsenic toxicity at Tribal Belt of DG Khan-Pakistan.•Portable technology for the consumers of undeveloped areas. |
---|---|
ISSN: | 0301-4797 1095-8630 1095-8630 |
DOI: | 10.1016/j.jenvman.2024.122759 |