Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth

Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and ino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-11, Vol.59 (41), p.19612-19627
Hauptverfasser: Hobbs, Christopher, Kulhánková, Johana, Nikendey Holubová, Barbora, Mahun, Andrii, Kobera, Libor, Erben, Jakub, Hedvičáková, Věra, Hauzerová, Šárka, Rysová, Miroslava, Máková, Veronika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19627
container_issue 41
container_start_page 19612
container_title Journal of materials science
container_volume 59
creator Hobbs, Christopher
Kulhánková, Johana
Nikendey Holubová, Barbora
Mahun, Andrii
Kobera, Libor
Erben, Jakub
Hedvičáková, Věra
Hauzerová, Šárka
Rysová, Miroslava
Máková, Veronika
description Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an N , N ´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering. Graphical abstract
doi_str_mv 10.1007/s10853-024-10324-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154148958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123442155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-f0d6ff638c66d7eeb434907886fa9704d337e32164e88b6cf9a0c5c475d3dab3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8BL16qk39tepRFXWHBy95D2iTdLt2mJi2y396sFQQPXmYG5veGNw-hWwIPBKB4jASkYBlQnhFgqcIZWhBRsIxLYOdoAUBpRnlOLtFVjHsAEAUlC7RdH6vQGuxDo3sf2073FvdpdG0VLI61ds53BjsfDnpsfY_jNAw-jG3f4Np2HdZmZ-NpoXuDm-A_x901unC6i_bmpy_R9uV5u1pnm_fXt9XTJqspY2PmwOTO5UzWeW4KayvOeAmFlLnTZQHcMFZYRknOrZRVXrtSQy1qXgjDjK7YEt3PZ4fgPyYbR3Vo48lT-sFPUTEiOOGyFDKhd3_QvZ9Cn8wlijLOKREiUXSm6uBjDNapIbQHHY6KgDrlrOacVcpZfeesIInYLIoJ7hsbfk__o_oCxxSAsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123442155</pqid></control><display><type>article</type><title>Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth</title><source>SpringerLink Journals</source><creator>Hobbs, Christopher ; Kulhánková, Johana ; Nikendey Holubová, Barbora ; Mahun, Andrii ; Kobera, Libor ; Erben, Jakub ; Hedvičáková, Věra ; Hauzerová, Šárka ; Rysová, Miroslava ; Máková, Veronika</creator><creatorcontrib>Hobbs, Christopher ; Kulhánková, Johana ; Nikendey Holubová, Barbora ; Mahun, Andrii ; Kobera, Libor ; Erben, Jakub ; Hedvičáková, Věra ; Hauzerová, Šárka ; Rysová, Miroslava ; Máková, Veronika</creatorcontrib><description>Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an N , N ´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10324-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Addition polymerization ; Alkoxides ; biochemical pathways ; Biocompatibility ; Biomedical materials ; Cell adhesion ; cell proliferation ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; composite polymers ; Copolymers ; Crystallography and Scattering Methods ; cytotoxicity ; extracellular matrix ; fibroblasts ; Materials for Life Sciences ; Materials Science ; medicine ; Nanofibers ; Nanomaterials ; oxamide ; peptides ; Polymer Sciences ; polymerization ; Prepolymers ; Process parameters ; Scaffolds ; Silicates ; Sol-gel processes ; sol-gel processing ; Solid Mechanics ; synthesis ; Tissue engineering</subject><ispartof>Journal of materials science, 2024-11, Vol.59 (41), p.19612-19627</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-f0d6ff638c66d7eeb434907886fa9704d337e32164e88b6cf9a0c5c475d3dab3</cites><orcidid>0000-0002-5456-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10324-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10324-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hobbs, Christopher</creatorcontrib><creatorcontrib>Kulhánková, Johana</creatorcontrib><creatorcontrib>Nikendey Holubová, Barbora</creatorcontrib><creatorcontrib>Mahun, Andrii</creatorcontrib><creatorcontrib>Kobera, Libor</creatorcontrib><creatorcontrib>Erben, Jakub</creatorcontrib><creatorcontrib>Hedvičáková, Věra</creatorcontrib><creatorcontrib>Hauzerová, Šárka</creatorcontrib><creatorcontrib>Rysová, Miroslava</creatorcontrib><creatorcontrib>Máková, Veronika</creatorcontrib><title>Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an N , N ´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering. Graphical abstract</description><subject>Addition polymerization</subject><subject>Alkoxides</subject><subject>biochemical pathways</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>cell proliferation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>composite polymers</subject><subject>Copolymers</subject><subject>Crystallography and Scattering Methods</subject><subject>cytotoxicity</subject><subject>extracellular matrix</subject><subject>fibroblasts</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>medicine</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>oxamide</subject><subject>peptides</subject><subject>Polymer Sciences</subject><subject>polymerization</subject><subject>Prepolymers</subject><subject>Process parameters</subject><subject>Scaffolds</subject><subject>Silicates</subject><subject>Sol-gel processes</subject><subject>sol-gel processing</subject><subject>Solid Mechanics</subject><subject>synthesis</subject><subject>Tissue engineering</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8BL16qk39tepRFXWHBy95D2iTdLt2mJi2y396sFQQPXmYG5veGNw-hWwIPBKB4jASkYBlQnhFgqcIZWhBRsIxLYOdoAUBpRnlOLtFVjHsAEAUlC7RdH6vQGuxDo3sf2073FvdpdG0VLI61ds53BjsfDnpsfY_jNAw-jG3f4Np2HdZmZ-NpoXuDm-A_x901unC6i_bmpy_R9uV5u1pnm_fXt9XTJqspY2PmwOTO5UzWeW4KayvOeAmFlLnTZQHcMFZYRknOrZRVXrtSQy1qXgjDjK7YEt3PZ4fgPyYbR3Vo48lT-sFPUTEiOOGyFDKhd3_QvZ9Cn8wlijLOKREiUXSm6uBjDNapIbQHHY6KgDrlrOacVcpZfeesIInYLIoJ7hsbfk__o_oCxxSAsg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hobbs, Christopher</creator><creator>Kulhánková, Johana</creator><creator>Nikendey Holubová, Barbora</creator><creator>Mahun, Andrii</creator><creator>Kobera, Libor</creator><creator>Erben, Jakub</creator><creator>Hedvičáková, Věra</creator><creator>Hauzerová, Šárka</creator><creator>Rysová, Miroslava</creator><creator>Máková, Veronika</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5456-5301</orcidid></search><sort><creationdate>20241101</creationdate><title>Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth</title><author>Hobbs, Christopher ; Kulhánková, Johana ; Nikendey Holubová, Barbora ; Mahun, Andrii ; Kobera, Libor ; Erben, Jakub ; Hedvičáková, Věra ; Hauzerová, Šárka ; Rysová, Miroslava ; Máková, Veronika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-f0d6ff638c66d7eeb434907886fa9704d337e32164e88b6cf9a0c5c475d3dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Addition polymerization</topic><topic>Alkoxides</topic><topic>biochemical pathways</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>cell proliferation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>composite polymers</topic><topic>Copolymers</topic><topic>Crystallography and Scattering Methods</topic><topic>cytotoxicity</topic><topic>extracellular matrix</topic><topic>fibroblasts</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>medicine</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>oxamide</topic><topic>peptides</topic><topic>Polymer Sciences</topic><topic>polymerization</topic><topic>Prepolymers</topic><topic>Process parameters</topic><topic>Scaffolds</topic><topic>Silicates</topic><topic>Sol-gel processes</topic><topic>sol-gel processing</topic><topic>Solid Mechanics</topic><topic>synthesis</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobbs, Christopher</creatorcontrib><creatorcontrib>Kulhánková, Johana</creatorcontrib><creatorcontrib>Nikendey Holubová, Barbora</creatorcontrib><creatorcontrib>Mahun, Andrii</creatorcontrib><creatorcontrib>Kobera, Libor</creatorcontrib><creatorcontrib>Erben, Jakub</creatorcontrib><creatorcontrib>Hedvičáková, Věra</creatorcontrib><creatorcontrib>Hauzerová, Šárka</creatorcontrib><creatorcontrib>Rysová, Miroslava</creatorcontrib><creatorcontrib>Máková, Veronika</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobbs, Christopher</au><au>Kulhánková, Johana</au><au>Nikendey Holubová, Barbora</au><au>Mahun, Andrii</au><au>Kobera, Libor</au><au>Erben, Jakub</au><au>Hedvičáková, Věra</au><au>Hauzerová, Šárka</au><au>Rysová, Miroslava</au><au>Máková, Veronika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>59</volume><issue>41</issue><spage>19612</spage><epage>19627</epage><pages>19612-19627</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an N , N ´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10324-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5456-5301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-11, Vol.59 (41), p.19612-19627
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_3154148958
source SpringerLink Journals
subjects Addition polymerization
Alkoxides
biochemical pathways
Biocompatibility
Biomedical materials
Cell adhesion
cell proliferation
Characterization and Evaluation of Materials
Chemical synthesis
Chemistry and Materials Science
Classical Mechanics
composite polymers
Copolymers
Crystallography and Scattering Methods
cytotoxicity
extracellular matrix
fibroblasts
Materials for Life Sciences
Materials Science
medicine
Nanofibers
Nanomaterials
oxamide
peptides
Polymer Sciences
polymerization
Prepolymers
Process parameters
Scaffolds
Silicates
Sol-gel processes
sol-gel processing
Solid Mechanics
synthesis
Tissue engineering
title Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20organosilane%20nanofibre%20scaffold%20formation%20supporting%20cell%20adhesion%20and%20growth&rft.jtitle=Journal%20of%20materials%20science&rft.au=Hobbs,%20Christopher&rft.date=2024-11-01&rft.volume=59&rft.issue=41&rft.spage=19612&rft.epage=19627&rft.pages=19612-19627&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10324-0&rft_dat=%3Cproquest_cross%3E3123442155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123442155&rft_id=info:pmid/&rfr_iscdi=true