Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth
Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and ino...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024-11, Vol.59 (41), p.19612-19627 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19627 |
---|---|
container_issue | 41 |
container_start_page | 19612 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Hobbs, Christopher Kulhánková, Johana Nikendey Holubová, Barbora Mahun, Andrii Kobera, Libor Erben, Jakub Hedvičáková, Věra Hauzerová, Šárka Rysová, Miroslava Máková, Veronika |
description | Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an
N
,
N
´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering.
Graphical abstract |
doi_str_mv | 10.1007/s10853-024-10324-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154148958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123442155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-f0d6ff638c66d7eeb434907886fa9704d337e32164e88b6cf9a0c5c475d3dab3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8BL16qk39tepRFXWHBy95D2iTdLt2mJi2y396sFQQPXmYG5veGNw-hWwIPBKB4jASkYBlQnhFgqcIZWhBRsIxLYOdoAUBpRnlOLtFVjHsAEAUlC7RdH6vQGuxDo3sf2073FvdpdG0VLI61ds53BjsfDnpsfY_jNAw-jG3f4Np2HdZmZ-NpoXuDm-A_x901unC6i_bmpy_R9uV5u1pnm_fXt9XTJqspY2PmwOTO5UzWeW4KayvOeAmFlLnTZQHcMFZYRknOrZRVXrtSQy1qXgjDjK7YEt3PZ4fgPyYbR3Vo48lT-sFPUTEiOOGyFDKhd3_QvZ9Cn8wlijLOKREiUXSm6uBjDNapIbQHHY6KgDrlrOacVcpZfeesIInYLIoJ7hsbfk__o_oCxxSAsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123442155</pqid></control><display><type>article</type><title>Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hobbs, Christopher ; Kulhánková, Johana ; Nikendey Holubová, Barbora ; Mahun, Andrii ; Kobera, Libor ; Erben, Jakub ; Hedvičáková, Věra ; Hauzerová, Šárka ; Rysová, Miroslava ; Máková, Veronika</creator><creatorcontrib>Hobbs, Christopher ; Kulhánková, Johana ; Nikendey Holubová, Barbora ; Mahun, Andrii ; Kobera, Libor ; Erben, Jakub ; Hedvičáková, Věra ; Hauzerová, Šárka ; Rysová, Miroslava ; Máková, Veronika</creatorcontrib><description>Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an
N
,
N
´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10324-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Addition polymerization ; Alkoxides ; biochemical pathways ; Biocompatibility ; Biomedical materials ; Cell adhesion ; cell proliferation ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; composite polymers ; Copolymers ; Crystallography and Scattering Methods ; cytotoxicity ; extracellular matrix ; fibroblasts ; Materials for Life Sciences ; Materials Science ; medicine ; Nanofibers ; Nanomaterials ; oxamide ; peptides ; Polymer Sciences ; polymerization ; Prepolymers ; Process parameters ; Scaffolds ; Silicates ; Sol-gel processes ; sol-gel processing ; Solid Mechanics ; synthesis ; Tissue engineering</subject><ispartof>Journal of materials science, 2024-11, Vol.59 (41), p.19612-19627</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-f0d6ff638c66d7eeb434907886fa9704d337e32164e88b6cf9a0c5c475d3dab3</cites><orcidid>0000-0002-5456-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10324-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10324-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hobbs, Christopher</creatorcontrib><creatorcontrib>Kulhánková, Johana</creatorcontrib><creatorcontrib>Nikendey Holubová, Barbora</creatorcontrib><creatorcontrib>Mahun, Andrii</creatorcontrib><creatorcontrib>Kobera, Libor</creatorcontrib><creatorcontrib>Erben, Jakub</creatorcontrib><creatorcontrib>Hedvičáková, Věra</creatorcontrib><creatorcontrib>Hauzerová, Šárka</creatorcontrib><creatorcontrib>Rysová, Miroslava</creatorcontrib><creatorcontrib>Máková, Veronika</creatorcontrib><title>Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an
N
,
N
´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering.
Graphical abstract</description><subject>Addition polymerization</subject><subject>Alkoxides</subject><subject>biochemical pathways</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>cell proliferation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>composite polymers</subject><subject>Copolymers</subject><subject>Crystallography and Scattering Methods</subject><subject>cytotoxicity</subject><subject>extracellular matrix</subject><subject>fibroblasts</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>medicine</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>oxamide</subject><subject>peptides</subject><subject>Polymer Sciences</subject><subject>polymerization</subject><subject>Prepolymers</subject><subject>Process parameters</subject><subject>Scaffolds</subject><subject>Silicates</subject><subject>Sol-gel processes</subject><subject>sol-gel processing</subject><subject>Solid Mechanics</subject><subject>synthesis</subject><subject>Tissue engineering</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8BL16qk39tepRFXWHBy95D2iTdLt2mJi2y396sFQQPXmYG5veGNw-hWwIPBKB4jASkYBlQnhFgqcIZWhBRsIxLYOdoAUBpRnlOLtFVjHsAEAUlC7RdH6vQGuxDo3sf2073FvdpdG0VLI61ds53BjsfDnpsfY_jNAw-jG3f4Np2HdZmZ-NpoXuDm-A_x901unC6i_bmpy_R9uV5u1pnm_fXt9XTJqspY2PmwOTO5UzWeW4KayvOeAmFlLnTZQHcMFZYRknOrZRVXrtSQy1qXgjDjK7YEt3PZ4fgPyYbR3Vo48lT-sFPUTEiOOGyFDKhd3_QvZ9Cn8wlijLOKREiUXSm6uBjDNapIbQHHY6KgDrlrOacVcpZfeesIInYLIoJ7hsbfk__o_oCxxSAsg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hobbs, Christopher</creator><creator>Kulhánková, Johana</creator><creator>Nikendey Holubová, Barbora</creator><creator>Mahun, Andrii</creator><creator>Kobera, Libor</creator><creator>Erben, Jakub</creator><creator>Hedvičáková, Věra</creator><creator>Hauzerová, Šárka</creator><creator>Rysová, Miroslava</creator><creator>Máková, Veronika</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5456-5301</orcidid></search><sort><creationdate>20241101</creationdate><title>Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth</title><author>Hobbs, Christopher ; Kulhánková, Johana ; Nikendey Holubová, Barbora ; Mahun, Andrii ; Kobera, Libor ; Erben, Jakub ; Hedvičáková, Věra ; Hauzerová, Šárka ; Rysová, Miroslava ; Máková, Veronika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-f0d6ff638c66d7eeb434907886fa9704d337e32164e88b6cf9a0c5c475d3dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Addition polymerization</topic><topic>Alkoxides</topic><topic>biochemical pathways</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>cell proliferation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>composite polymers</topic><topic>Copolymers</topic><topic>Crystallography and Scattering Methods</topic><topic>cytotoxicity</topic><topic>extracellular matrix</topic><topic>fibroblasts</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>medicine</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>oxamide</topic><topic>peptides</topic><topic>Polymer Sciences</topic><topic>polymerization</topic><topic>Prepolymers</topic><topic>Process parameters</topic><topic>Scaffolds</topic><topic>Silicates</topic><topic>Sol-gel processes</topic><topic>sol-gel processing</topic><topic>Solid Mechanics</topic><topic>synthesis</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobbs, Christopher</creatorcontrib><creatorcontrib>Kulhánková, Johana</creatorcontrib><creatorcontrib>Nikendey Holubová, Barbora</creatorcontrib><creatorcontrib>Mahun, Andrii</creatorcontrib><creatorcontrib>Kobera, Libor</creatorcontrib><creatorcontrib>Erben, Jakub</creatorcontrib><creatorcontrib>Hedvičáková, Věra</creatorcontrib><creatorcontrib>Hauzerová, Šárka</creatorcontrib><creatorcontrib>Rysová, Miroslava</creatorcontrib><creatorcontrib>Máková, Veronika</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobbs, Christopher</au><au>Kulhánková, Johana</au><au>Nikendey Holubová, Barbora</au><au>Mahun, Andrii</au><au>Kobera, Libor</au><au>Erben, Jakub</au><au>Hedvičáková, Věra</au><au>Hauzerová, Šárka</au><au>Rysová, Miroslava</au><au>Máková, Veronika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>59</volume><issue>41</issue><spage>19612</spage><epage>19627</epage><pages>19612-19627</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an
N
,
N
´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10324-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5456-5301</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024-11, Vol.59 (41), p.19612-19627 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3154148958 |
source | SpringerLink Journals - AutoHoldings |
subjects | Addition polymerization Alkoxides biochemical pathways Biocompatibility Biomedical materials Cell adhesion cell proliferation Characterization and Evaluation of Materials Chemical synthesis Chemistry and Materials Science Classical Mechanics composite polymers Copolymers Crystallography and Scattering Methods cytotoxicity extracellular matrix fibroblasts Materials for Life Sciences Materials Science medicine Nanofibers Nanomaterials oxamide peptides Polymer Sciences polymerization Prepolymers Process parameters Scaffolds Silicates Sol-gel processes sol-gel processing Solid Mechanics synthesis Tissue engineering |
title | Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T07%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20organosilane%20nanofibre%20scaffold%20formation%20supporting%20cell%20adhesion%20and%20growth&rft.jtitle=Journal%20of%20materials%20science&rft.au=Hobbs,%20Christopher&rft.date=2024-11-01&rft.volume=59&rft.issue=41&rft.spage=19612&rft.epage=19627&rft.pages=19612-19627&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10324-0&rft_dat=%3Cproquest_cross%3E3123442155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123442155&rft_id=info:pmid/&rfr_iscdi=true |