High Selectivity Fluorescence and Electrochemical Dual-Mode Detection of Glutathione in the Serum of Parkinson’s Disease Model Mice and Humans

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2025-01, Vol.97 (2), p.1318-1328
Hauptverfasser: Dong, Hui, Chen, Weitian, Xu, Ke, Zheng, Linlin, Wei, Bingyu, Liu, Ruiyu, Yang, Jingru, Wang, Tao, Zhou, Yanli, Zhang, Yintang, Xu, Maotian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe. A series of “turn-on” electrochemical and fluorescent probes were developed, with resorufin (Re) serving as the reporting unit and featuring specific GSH recognition sites. Among these, the 7-(3,5-dinitrophenoxy)-3H-phenoxazin-3-one (Re-DNP) probe was selected for its high selectivity as both a fluorescent and electrochemical probe. Its response to GSH was superior in comparison to that observed for hydrogen sulfide (H2S) and cysteine (Cys). For electrochemical detection using screen-printed carbon electrode (SPCE)/carbon nanotube (CNT) modified electrodes, the detection limit for GSH was 5 μM, with a linear range of 25–500 μM. In fluorescence detection, the probe produced a 78-fold increase in emission at 630 nm in the presence of GSH, with a strong linear correlation between fluorescence intensity and GSH concentration in the range of 10–700 μM, and a detection limit of 2 μM. When applied to real clinical serum samples, the probe demonstrated significantly lower GSH levels in both PD mice and human patients compared to healthy controls. This dual-mode detection method provides a sensitive and accurate tool for GSH detection, with potential applications in understanding GSH’s role in PD and related neurodegenerative diseases.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c05627