CO Cryo-sorption as a Surface-sensitive Spectroscopic Probe of the Active Site Density of Single-atom Catalysts

Quantifying the number of active sites is a crucial aspect in the performance evaluation of single metal-atom electrocatalysts. A possible realization is using adsorbing gas molecules that selectively bind to the single-atom transition metal and then probing their surface density using spectroscopic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2025-01, p.e202420673
Hauptverfasser: Jeong, Beomgyun, Abbas, Hafiz Ghulam, Klein, Benedikt Paul, Bae, Geunsu, Velmurugan, Adith Ramakrishnan, Choi, Chang Hyuck, Kim, Geonhwa, Kim, Dongwoo, Kim, Ki-Jeong, Cha, Byeong Jun, Kim, Young Dok, Jaouen, Frederic, Maurer, Reinhard, Ringe, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantifying the number of active sites is a crucial aspect in the performance evaluation of single metal-atom electrocatalysts. A possible realization is using adsorbing gas molecules that selectively bind to the single-atom transition metal and then probing their surface density using spectroscopic tools. Herein, using in situ X-ray photoelectron (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy, we detect adsorbed CO gas molecules on a FeNC oxygen reduction single atom catalyst. Correlating XPS and NEXAFS, we develop a simple surface- and chemically-sensitive protocol to accurately and quickly quantify the active site density. Density functional theory-based X-ray spectra simulations reaffirm the assignment of the spectroscopic fingerprints of the CO molecules adsorbed at Fe-N4-C sites, and provide additional unexpected structural insights about the active site needed to explain the low-temperature CO adsorption. Our work represents an important step towards an accurate quantitative catalytic performance evaluation, and thus towards developing reliable material design principles and catalysts.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202420673