Leveraging Multivalent Assembly towards High-Temperature Liquid-Phase Phosphorescence

High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2025-01, p.e202423650
Hauptverfasser: Luo, Wuzhen, Chen, Liming, Yin, Guangqiang, Yue, Chaojun, Xie, Shiye, Zhou, Jiayin, Feng, Weihao, Nie, Yujing, Qiu, Huakai, Li, Feiming, Cai, Shunyou, Li, Yijiang, Cai, Zhixiong, Chen, Tao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission. Moreover, the photophysical properties of HTLP are significantly enhanced by boosting multivalent interactions using multitopic phosphors, demonstrating a visible afterglow of 5 s in boiling water, more than 2 s in dimethylsulfoxide at 460 K (187 °C), and a long lifetime of 70.3 ms in N-methylpyrrolidone at 476 K (203 °C). Based on their fluidity and robust HTLP emission, in situ microcracks detection of high-temperature operating instruments and spatial-time-temperature-resolved anticounterfeiting are demonstrated.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202423650