A modified orthogonal-distance ray-tracer method applied to dual rotation PET systems
a new projector, orthogonal-distance ray-tracer varying-full width at half maximum (OD-RT-VF), was developed to model a shift-variant elliptical point-spread function (PSF) response to improve the image quality (IQ) of a preclinical dual-rotation PET system. the OD-RT-VF projector models different F...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2025-01, Vol.70 (2), p.25021 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | a new projector, orthogonal-distance ray-tracer varying-full width at half maximum (OD-RT-VF), was developed to model a shift-variant elliptical point-spread function (PSF) response to improve the image quality (IQ) of a preclinical dual-rotation PET system.
the OD-RT-VF projector models different FWHM values of the PSF in multiple directions, using half-height and half-width tube-of-response (ToR) values. The OD-RT-VF method's performance was evaluated against the original OD-RT method and a ToR model with constant response. The evaluation involved simulations of NEMA NU 4-2008 IQ and Derenzo phantoms, as well as a real mouse injected with [
F]-NaF scanned with the easyPET.3D system.
the OD-RT-VF method demonstrated superior image resolution and uniformity (11.9% vs 15.9%) compared to the OD-RT model. In micro-derenzo phantom simulations, it resolved rods down to 1.0 mm, outperforming the other methods. For IQ phantom simulations, the OD-RT-VF projector at convergency achieved hot rods recovery coefficients ranging from 22.4% to 93.3% and lower spillover ratios in cold regions of 0.22 and 0.33 for air and water, respectively. For bone radiotracer imaging, OD-RT-VF produced clearer images of major skeletal parts, with less noise compared to OD-RT and better resolution compared to ToR projectors.
the study shows that the OD-RT-VF projector method enhances PET imaging by providing better resolution, uniformity, and IQ. This model, in addition to a list-mode and GPU-based reconstruction addressing the data sparsity of dual-rotation PET geometries, unlocks their imaging potential for small animal imaging. |
---|---|
ISSN: | 0031-9155 1361-6560 1361-6560 |
DOI: | 10.1088/1361-6560/ada718 |