The Effect of Ingesting Alginate-Encapsulated Carbohydrates and Branched-Chain Amino Acids During Exercise on Performance, Gastrointestinal Symptoms, and Dental Health in Athletes

This study aimed to compare the effects of a carbohydrate (CHO) hydrogel with (ALG-CP) or without (ALG-C) branched-chain amino acids, and a CHO-only non-hydrogel (CON), on cycling performance. The hydrogels, encapsulated in an alginate matrix, are designed to control CHO release, potentially optimis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2024-12, Vol.16 (24), p.4412
Hauptverfasser: Nielsen, Lotte L K, Lambert, Max Norman Tandrup, Jensen, Jørgen, Jeppesen, Per Bendix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to compare the effects of a carbohydrate (CHO) hydrogel with (ALG-CP) or without (ALG-C) branched-chain amino acids, and a CHO-only non-hydrogel (CON), on cycling performance. The hydrogels, encapsulated in an alginate matrix, are designed to control CHO release, potentially optimising absorption, increasing substrate utilisation, and reducing gastrointestinal distress as well as carious lesions. In a randomised, double-blinded, crossover trial, 10 trained male cyclists/triathletes completed three experimental days separated by ~6 days. During the experimental days, participants completed a standardised 2 h cycling bout (EX1), followed by a time-to-exhaustion (TTE) performance test at W . Supplements were ingested during EX1. Participants cycled ~8.8 (29.6%) and ~5.4 (29.1%) minutes longer during TTE with ALG-CP compared to ALG-C and CON, respectively. TTE was 65.28 ± 2.8 min with ALG-CP, 56.46 ± 10.92 min with ALG-C, and 59.89 ± 11.89 min with CON. Heart rate (HR) was lower during EX1 with ALG-CP ( = 0.03), and insulin levels increased more significantly during the first 45 min with ALG-CP. Plasma glucose and glucagon levels remained consistent across supplements, although glucagon was higher with ALG-CP before TTE. Post-exercise myoglobin levels were lower with ALG-CP compared to ALG-C ( = 0.02), indicating reduced muscle damage. While ALG-CP improved performance duration compared to ALG-C and CON, the difference did not reach statistical significance. Additionally, there was a lower HR during the cycling session, alongside a significantly lower level of myoglobin with ALG-CP. These findings suggest that ALG-CP may offer advantages in cycling performance and recovery.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu16244412