Functional and Biological Characterization of the LGR5Δ5 Splice Variant in HEK293T Cells

The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-12, Vol.25 (24), p.13417
Hauptverfasser: Kappler, Matthias, Thielemann, Laura, Glaß, Markus, Caggegi, Laura, Güttler, Antje, Pyko, Jonas, Blauschmidt, Sarah, Gutschner, Tony, Taubert, Helge, Otto, Sven, Eckert, Alexander W, Tavassol, Frank, Bache, Matthias, Vordermark, Dirk, Kaune, Tom, Rot, Swetlana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described by our group, is associated with prognosis and metastasis in oral squamous cell carcinoma (OSCC) and soft tissue sarcoma (STS). In a proof-of-principle analysis, the function of LGR5Δ5 was investigated in HEK293T cells, a model cell line of the Wnt pathway, compared to full-length LGR5 (FL) expression. The CRISPR/CAS knockout of and (thereby avoiding the side effects of LGR4) resulted in a loss of Wnt activity that cannot be restored by LGR5Δ5 but by LGR5FL rescue. The ability to migrate was not affected by LGR5Δ5, but was reduced by LGR5FL overexpression. The CRISPR/CAS of and induced radiosensitization, which was enhanced by the overexpression of LGR5FL or LGR5Δ5. RNA sequencing analysis revealed a significant increase in the ligand R-spondin 1 (RSPO1) level by LGR5Δ5. Furthermore, LGR5Δ5 appears to be involved in the regulation of genes related to the cytoskeleton, extracellular matrix stiffness, and angiogenesis, while LGR5FL is associated with the regulation of collagens and histone proteins.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms252413417