Specific cleavage of IGFBP-4 by papp-a in nervous tissue
Astrocytes are subtypes of glial cells involved in metabolic, structural, homeostatic, and neuroprotective processes that help neurons maintain viability. Insulin-like growth factors IGF-1 and IGF-2 are known to have neuroprotective effects on neurons and glial cells through interaction with specifi...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2024-11, Vol.733, p.150655, Article 150655 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Astrocytes are subtypes of glial cells involved in metabolic, structural, homeostatic, and neuroprotective processes that help neurons maintain viability. Insulin-like growth factors IGF-1 and IGF-2 are known to have neuroprotective effects on neurons and glial cells through interaction with specific receptors. IGF forms a complex with IGF-binding proteins (IGFBP) in nervous tissue and is released from the complex via IGFBP proteolysis by specific proteases. It has been reported that IGFBP-2, 5 and 6 are cleaved by specific proteases in the central nervous system (CNS), followed by IGF release; however, it was unknown whether IGFBP-4 was exposed to a particular proteolysis in nervous tissue. Using neurons and astrocytes derived from human induced pluripotent stem cell lines (hiPSC), as well as rat brain-sourced primary neuron-glia cultures, we demonstrated that IGFBP-4 is specifically cleaved in nervous tissue by the Pregnancy Associated Plasma Protein A (PAPP-A) protease and that this cleavage is IGF-dependent. Our results indicate that astrocyte rather than neuron PAPP-A cleaves IGFBP-4 in nervous tissue suggesting that this may be one of the fundamental mechanisms for IGF interchange between these two types of cells.
•PAPP-A-mediated IGFBP-4 proteolysis proceeds in nervous tissue.•Observed IGFBP-4 proteolysis is IGF-dependent.•IGFBP-4 is predominantly cleaved by PAPP-A produced from astrocytes than neurons. |
---|---|
ISSN: | 0006-291X 1090-2104 1090-2104 |
DOI: | 10.1016/j.bbrc.2024.150655 |