Effect of electron beam irradiation on raw goat milk: microbiological, physicochemical and protein structural analysis

BACKGROUND Goat milk is considered a nutritionally superior resource, owing to its advantageous nutritional attributes. Nevertheless, it is susceptible to spoilage and the persistence of pathogens. Electron beam irradiation stands as a promising non‐thermal processing technique capable of prolonging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2024-09, Vol.104 (12), p.7713-7721
Hauptverfasser: Wen, Chunlu, Peng, Yue, Zhang, Linlu, Chen, Ya, Yu, Jiangtao, Bai, Junqing, Yang, Kui, Ding, Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND Goat milk is considered a nutritionally superior resource, owing to its advantageous nutritional attributes. Nevertheless, it is susceptible to spoilage and the persistence of pathogens. Electron beam irradiation stands as a promising non‐thermal processing technique capable of prolonging shelf life with minimal residue and a high degree of automation. RESULTS The effects of electron beam irradiation (2, 3, 5, and 7 kGy) on microorganisms, physicochemical properties, and protein structure of goat milk compared with conventional pasteurized goat milk (PGM) was evaluated. It was found that a 2 kGy electron beam irradiation reduces the total microbial count of goat milk by 6‐logs, and the irradiated goat milk protein secondary structure showed a significant decrease in ɑ‐helix content. Low irradiation doses led to microaggregation and crosslinking. In contrast, high doses (≥ 5 kGy) slightly disrupted the aggregates and decreased the particle size, disrupting the microscopic surface structure of goat milk, verified by scanning electron microscopy and confocal laser scanning microscopy. CONCLUSION The irradiation of goat milk with a 2 kGy electron beam may effectively inactivate harmful microorganisms in the milk and maintain/or improve the physicochemical quality and protein structure of goat milk compared to thermal pasteurization. © 2024 Society of Chemical Industry.
ISSN:0022-5142
1097-0010
1097-0010
DOI:10.1002/jsfa.13518