Exposure to MEHP during Pregnancy and Lactation Impairs Offspring Growth and Development by Disrupting Thyroid Hormone Homeostasis

Mono­(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-02, Vol.58 (8), p.3726-3736
Hauptverfasser: Yin, Jia, Liu, Shuang, Li, Yongting, Hu, Ligang, Liao, Chunyang, Jiang, Guibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mono­(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herein, we investigated the thyroid-disrupting effects of MEHP and the effects on growth and development of maternal exposure to MEHP during pregnancy and lactation on the offspring modeled by SD rats. We found that thyroid hormone (TH) homeostasis was disrupted in the offspring, showing a decrease in total TH levels, combined with an increase in free TH levels. Nonhomeostasis ultimately leads to weight loss in female offspring, longer anogenital distance in male offspring, prolonged eye-opening times, and fewer offspring. Our findings indicate that maternal exposure to MEHP during pregnancy and lactation indirectly influences the synthesis, transport, transformation, and metabolism of THs in the offspring. Meanwhile, MEHP disrupted the morphology and ultrastructure of the thyroid gland, leading to TH disruption. This hormonal disruption might ultimately affect the growth and development of the offspring. This study provides a novel perspective on the thyroid toxicity mechanisms of phthalate metabolites, emphasizing the health risks to newborns indirectly exposed to phthalates and their metabolites.
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.3c09756