Molecular Investigation of the Self-Assembly Mechanism Underlying Polydopamine Coatings: The Synergistic Effect of Typical Building Blocks Acting on Interfacial Adhesion

Polydopamine (PDA) is well known as a mussel-inspired adhesive material composed of oligomeric heteropolymers. However, the conventional eumelanin-like structural assumption of PDA seems deficient in explaining its interfacial adhesion. To determine the decisive mechanism of PDA coating formation, e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (38), p.51699-51714
Hauptverfasser: Li, Xiguang, Wu, Chunya, Wu, Jiahao, Sun, Ruijiang, Hou, Bo, Liu, Chang, Chen, Mingjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polydopamine (PDA) is well known as a mussel-inspired adhesive material composed of oligomeric heteropolymers. However, the conventional eumelanin-like structural assumption of PDA seems deficient in explaining its interfacial adhesion. To determine the decisive mechanism of PDA coating formation, experiments and simulations were performed in this study. 5,6-Dihydroxyindole (DHI), the signature building block of eumelanin, was introduced as the control group. Various typical building blocks in PDA were quantified by physicochemical characterizations, and the polar-group-dominated interfacial interaction was evaluated by classic molecular dynamics and metadynamics methods. Aminoethyl has been proven to be the key functional group inducing the adsorption of PDA on the hydroxylated silica substrates, while DHI shows limited adhesion to the substrate due to the absence of aminoethyl as the catechol-indole structure of DHI exhibits poor affinity to the silica surface. Pyrrole carboxylic acid, as an oxidative product detected from PDA/DHI, is unfavorable for its adhesion to silica substrates. Overall, the coating formation and self-aggregating precipitation of PDA are two competitive aminoethyl-consuming paths; thus, the in situ oxidative coupling of dopamine is indispensable for the PDA coating preparation. The collected PDA precipitates can no longer present satisfactory coating forming behavior, resulting from a shortage of aminoethyl moieties.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c10816