Constructing P2/O3 biphasic structure of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries

[Display omitted] Fe/Mn-based layered oxide cathode is regarded as a competitive candidate for sodium-ion batteries (SIBs) because of its high theoretical capacity, earth abundance and low cost. However, its poor cycling stability still remains a major bottleneck. Herein, P2/O3 biphasic Na0.67Fe0.42...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-01, Vol.654, p.1405-1416
Hauptverfasser: Zhang, Ping, Zhang, Guohua, Liu, Yukun, Fan, Yuxin, Shi, Xinyue, Dai, Yiming, Gong, Shiwen, Hou, Jingrong, Ma, Jiwei, Huang, Yunhui, Zhang, Renyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Fe/Mn-based layered oxide cathode is regarded as a competitive candidate for sodium-ion batteries (SIBs) because of its high theoretical capacity, earth abundance and low cost. However, its poor cycling stability still remains a major bottleneck. Herein, P2/O3 biphasic Na0.67Fe0.425Mn0.425Cu0.15O2 layered oxide is successfully synthesized via a sol–gel method. It is observed that Cu substitution can facilitate the conversion of P2 to O3 phase, and the P2/O3 composite structure can be obtained with an appropriate amount of Cu. Meanwhile, in-situ XRD reveals that constructing P2/O3 composite structure can realize the highly reversible phase transition process of P2/O3–P2/P3–OP4/OP2 and decrease the lattice mismatch during Na+ insertion/extraction. Consequently, the biphasic P2/O3-Na0.67Fe0.425Mn0.425Cu0.15O2 electrode exhibits 87.1 % capacity retention after 100 cycles at 1C, while the single phase P2-Na0.67Fe0.5Mn0.5O2 electrode has only 36.4 %. Therefore, the constructing biphasic structure is proved to be an effective strategy for designing high-performance Fe/Mn-based layered oxide cathodes.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.10.129