Synthesis of utility supply chain network and industrial symbioses for heat integration

This paper presents a method for integrating the periodic heat demand of sets of co-located process plants with a biomass-based utility supply chain network. The methodology adopted involves generating a composite superstructure, which combines the supply chain model and the multi-period interplant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production 2022-12, Vol.380, p.134921, Article 134921
Hauptverfasser: Isafiade, Adeniyi Jide, Cowen, Nicholas, Vogel, Andrew, Čuček, Lidija, Kravanja, Zdravko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a method for integrating the periodic heat demand of sets of co-located process plants with a biomass-based utility supply chain network. The methodology adopted involves generating a composite superstructure, which combines the supply chain model and the multi-period interplant stage-wise superstructure model. Supply nodes in the supply chain are linked to the central utility hub through a set of transportation/energy transmission options, while the utility hub is linked to a set of co-located process plants through fluid transmission pipelines. The developed model was applied to a hypothetical case study involving three co-located process plants. The solution generated involves the use of biomass, transported by truck. For hot utility generation at the utility hub, corn stover is used in all seasons (63.4% of the total feedstock), glycerol in seasons 1 and 3 (27.1% of the total feedstock) and wood only in season 1 (9.5% of the total feedstock). In terms of hot utilities generated from the selected feedstocks, only high- and low-pressure steam were selected. Of the 14 heat exchangers selected, 3 involve interplant heat exchange at the utility hub, 2 are hot utility heat exchangers, 1 is cold utility exchanger and 8 are intra-plant heat exchangers. The developed method illustrates how seasonality in availability of bio-based renewable energy sources and the periodicity of process plants operating parameters influence the heat demand of co-located process plants.
ISSN:0959-6526
1879-1786
DOI:10.1016/j.jclepro.2022.134921