High-performance dielectric film capacitors based on cellulose/Al2O3 nanosheets/PVDF composites

The design and preparation of novel renewable biomass-based dielectric composites have drawn great attention recently. Here, cellulose was dissolved in NaOH/urea aqueous solution, and Al2O3 nanosheets (AONS) synthesized by hydrothermal method were used as fillers. Then the regenerated cellulose (RC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-07, Vol.243, p.125220-125220, Article 125220
Hauptverfasser: Zheng, Xin, Yin, Yanan, Wang, Peng, Sun, Chenyu, Yang, Quanling, Shi, Zhuqun, Xiong, Chuanxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design and preparation of novel renewable biomass-based dielectric composites have drawn great attention recently. Here, cellulose was dissolved in NaOH/urea aqueous solution, and Al2O3 nanosheets (AONS) synthesized by hydrothermal method were used as fillers. Then the regenerated cellulose (RC)-AONS dielectric composite films were prepared by regeneration, washing and drying. The two-dimensional AONS had a better effect on improving the dielectric constant and breakdown strength of the composites, so that the RC-AONS composite film with 5 wt% AONS content reached an energy density of 6.2 J/cm3 at 420 MV/m. Furthermore, in order to improve the dielectric energy storage properties of cellulose films in high humidity environment, the hydrophobic polyvinylidene fluoride (PVDF) was innovatively introduced to construct RC-AONS-PVDF composite films. The energy storage density of the prepared ternary composite films could reach 8.32 J/cm3 at 400 MV/m, which was 416 % improvement against that of the commercially biaxially oriented polypropylene (2 J/cm3), and could be cycled for >10,000 times under 200 MV/m. Concurrently, the water absorption of the composite film in humidity was effectively reduced. This work broadens the application prospect of biomass-based materials in the field of film dielectric capacitor.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.125220