Full-length transcriptome analysis of two chemotype and functional characterization of genes related to sesquiterpene biosynthesis in Atractylodes lancea

Atractylodes lancea (Thunb.) DC. is an important medicinal plant mainly distributed in China. A. lancea is rich in volatile oils and has a significant effect on various diseases, including coronavirus disease 2019 (COVID-19). Based on the signature constituents of volatile oils, A. lancea is divided...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-01, Vol.225, p.1543-1554
Hauptverfasser: Wu, Junxian, Hu, Jianpeng, Yu, Hanwen, Lu, Jimei, Jiang, Lu, Liu, Weiwei, Guan, Fengya, Yao, Jinchen, Xie, Jin, Zhao, Yujiao, Chu, Shanshan, Fang, Qingying, Peng, Huasheng, Zha, Liangping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atractylodes lancea (Thunb.) DC. is an important medicinal plant mainly distributed in China. A. lancea is rich in volatile oils and has a significant effect on various diseases, including coronavirus disease 2019 (COVID-19). Based on the signature constituents of volatile oils, A. lancea is divided into two chemotypes: the Dabieshan and Maoshan chemotype. Gas chromatography-mass spectrometry (GC–MS) results revealed that the hinesol and β-eudesmol contents in the Dabieshan chemotype were higher than those in the Maoshan chemotype. Next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technologies were combined to investigate the molecular mechanisms of sesquiterpenoid biosynthesis in A. lancea. A total of 42 differentially expressed genes (DEGs) for terpenoid biosynthesis were identified in the two chemotype groups, and nine full-length terpene synthase (TPS) genes were identified. Subcellular localization revealed that AlTPS1 and AlTPS2 proteins were localized in the nucleus and endoplasmic reticulum. They use FPP as a substrate to generate sesquiterpenoids. AlTPS1 catalyzes biosynthesis of elemol while AlTPS2 is observed to perform β-farnesene synthase activity. This study provides information for understanding the differences in the accumulation of terpenoids in two chemotypes of A. lancea and lays a foundation for further elucidation of the molecular mechanism of sesquiterpenoid biosynthesis.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.11.210