Integrating genetic analysis of germplasm wealth for enhanced selection and improvement in olive (Olea europaea L.): insights from leaves
Key Message High-throughput next-generation sequencing of 161 olive germplas. 33 samples were selected as core olive germplasm and Fingerprints were constructed. After GWAS analysis of olive leaf shape, 14 candidate genes were localized. Olive ( Olea europaea L.) has been introduced to China since t...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2024-10, Vol.43 (10), p.247-247, Article 247 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Key Message
High-throughput next-generation sequencing of 161 olive germplas. 33 samples were selected as core olive germplasm and Fingerprints were constructed. After GWAS analysis of olive leaf shape, 14 candidate genes were localized.
Olive (
Olea europaea
L.) has been introduced to China since the 1960s. After a prolonged period of variation and domestication, there is a lack of comprehensive research on its genetics. The olive oil directly extracted from
Olea europaea
L. is recognized as ‘liquid gold’, nevertheless, people constantly overlook the valuable wealth of olive leaves. High-throughput next-generation sequencing was performed on 161 olive germplasm to analyze the kinship, genetic structure and diversity of olives, and the core germplasm of olives were selected and fingerprints were constructed. Meanwhile, Genome-wide association analysis (GWAS) was performed to locate the gene for regulating olive leaf shape. Herein, the results parsed that most of the Chinese olive germplasm was more closely related to the Italian germplasm. A wealth of hybridized germplasm possessed high genetic diversity and had the potential to be used as superior parental material for olive germplasm. A total of 33 samples were selected and characterized as core germplasm of olive and Fingerprints were also constructed. A total of 14 candidate genes were localized after GWAS analysis of four olive leaf shape phenotypes, including leaf shape, leaf curvature shape, leaf tip and leaf base shape. Collectively, this study revealed the genetic basis of olives in China and also succeeded in constructing the core germplasm that stands for the genetic diversity of olives, which can contribute to the scientific and effective collection and preservation of olive germplasm resources, and provide a scientific basis for the in-depth excavation and utilization of genes regulating olive leaf shape. |
---|---|
ISSN: | 0721-7714 1432-203X 1432-203X |
DOI: | 10.1007/s00299-024-03323-7 |