Hybrid gelatin-sulfated alginate scaffolds as dermal substitutes can dramatically accelerate healing of full-thickness diabetic wounds
Diabetic foot ulcers (DFUs) are defined as chronic and non-healing wounds that cause skin disorders. Here, we introduce a novel biodegradable gelatin/sulfated alginate hybrid scaffold as a dermal substitute to accelerate the healing of full-thickness diabetic ulcers in a diabetic mouse model. The hy...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2023-02, Vol.302, p.120404-120404, Article 120404 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diabetic foot ulcers (DFUs) are defined as chronic and non-healing wounds that cause skin disorders. Here, we introduce a novel biodegradable gelatin/sulfated alginate hybrid scaffold as a dermal substitute to accelerate the healing of full-thickness diabetic ulcers in a diabetic mouse model. The hybrid scaffold possessing different weight ratios of sulfated alginate, from 10 % up to 50 %, were prepared through chemical crosslinking by carbodiimide chemistry and further freeze-drying. Based on the in vitro cytotoxicity experiments, the hybrid scaffolds not only showed no cytotoxicity, but the cell growth also dramatically increased by increasing the sulfated alginate content. Finally, the pathology of hybrid scaffolds as the dermal substitutes for healing of full-thickness diabetic wounds showed the more appropriate formation of epidermal layer, more homogeneous distribution of collagenous tissue and lower penetration of immune cells for the hybrid scaffolds-treated wounds.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2022.120404 |