Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane

In this paper, a multi-core@shell catalyst LDH@SiO2 was fabricated by coating a silica layer over hexagonal Ni–Mg–Al LDH nanoplates. After calcination and H2-reduction, Ni nanoparticles were well dispersed on the support, as well as encapsulated within the mesoporous silica shell. The multi-core@she...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2022-11, Vol.200, p.1362-1370
Hauptverfasser: Bian, Zhoufeng, Deng, Shaobi, Sun, Zhenkun, Ge, Tianshu, Jiang, Bo, Zhong, Wenqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a multi-core@shell catalyst LDH@SiO2 was fabricated by coating a silica layer over hexagonal Ni–Mg–Al LDH nanoplates. After calcination and H2-reduction, Ni nanoparticles were well dispersed on the support, as well as encapsulated within the mesoporous silica shell. The multi-core@shell catalyst was then tested in low temperature dry reforming of methane (DRM) at 600 °C and showed a stable CH4 conversion of 27% for 16 h time on stream. Characterizations of the spent catalyst indicated that there was almost no carbon formation and the multi-core@shell structure was well preserved. While the pristine layered double hydroxide (LDH) catalyst exhibited a severe carbon formation as 68%. The confinement effect conveyed by the unique multi-core@shell structure effectively suppressed metal sintering and carbon deposition. Besides, the thickness of the silica shell was tuned and it made a great difference to the catalytic activity due to the diffusion resistance.
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2022.10.046