Intra-hour photovoltaic forecasting through a time-varying Markov switching model

This work presents a Markov switching model with a time-varying transition matrix to forecast intra-hour photovoltaic (PV) power output, aiming at providing forecasting flexibility. First, the proposed methodology captures images of the sky employing a self-made, low-cost all-sky imager. Second, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2023-09, Vol.278, p.127952, Article 127952
Hauptverfasser: Rosen, Karol, Angeles-Camacho, César, Elvira, Víctor, Guillén-Burguete, Servio Tulio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a Markov switching model with a time-varying transition matrix to forecast intra-hour photovoltaic (PV) power output, aiming at providing forecasting flexibility. First, the proposed methodology captures images of the sky employing a self-made, low-cost all-sky imager. Second, the goal is to limit exposure problems in those images via the exposure fusion technique. Third, the proposed algorithm identifies groups of pixels forming clouds through a super paramagnetic clustering algorithm. Finally, we model the problem with a homogeneous Poisson process and forecast the cloud location and the shadowed area on a PV plant for the coming minutes. The shadowed area together with meteorological data are the inputs to this model. In the case study, our approach shows better performance than the persistence method, in particular for changing cloud conditions. •Dynamic models, are suitable for intra-hour PV power output forecasts.•Markov switching models show better flexibility.•Forecasting accuracy is evaluated through scaled accuracy errors.
ISSN:0360-5442
DOI:10.1016/j.energy.2023.127952