Seasonal Controls on Microbial Depolymerization and Oxidation of Organic Matter in Floodplain Soils

Floodplain soils are vast reservoirs of organic carbon often attributed to anaerobic conditions that impose metabolic constraints on organic matter degradation. What remains elusive is how such metabolic constraints respond to dynamic flooding and drainage cycles characteristic of floodplain soils....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-09, Vol.58 (38), p.16815-16823
Hauptverfasser: Anderson, Cam G., Tfaily, Malak M., Chu, Rosalie K., Tolić, Nikola, Fox, Patricia M., Nico, Peter S., Fendorf, Scott, Keiluweit, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Floodplain soils are vast reservoirs of organic carbon often attributed to anaerobic conditions that impose metabolic constraints on organic matter degradation. What remains elusive is how such metabolic constraints respond to dynamic flooding and drainage cycles characteristic of floodplain soils. Here we show that microbial depolymerization and respiration of organic compounds, two rate-limiting steps in decomposition, vary spatially and temporally with seasonal flooding of mountainous floodplain soils (Gothic, Colorado, USA). Combining metabolomics and -proteomics, we found a lower abundance of oxidative enzymes during flooding coincided with the accumulation of aromatic, high-molecular weight compounds, particularly in surface soils. In subsurface soils, we found that a lower oxidation state of carbon coincided with a greater abundance of chemically reduced, energetically less favorable low-molecular weight metabolites, irrespective of flooding condition. Our results suggest that seasonal flooding temporarily constrains oxidative depolymerization of larger, potentially plant-derived compounds in surface soils; in contrast, energetic constraints on microbial respiration persist in more reducing subsurface soils regardless of flooding. Our work underscores that the potential vulnerability of these distinct anaerobic carbon storage mechanisms to changing flooding dynamics should be considered, particularly as climate change shifts both the frequency and extent of flooding in floodplains globally.
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.4c05109