Expanding the Chemical Diversity of Grisechelins via Heterologous Expression
Thiazole scaffold-based small molecules exhibit a range of biological activities and play important roles in drug discovery. Based on bioinformatics analysis, a putative biosynthetic gene cluster (BGC) for thiazole-containing compounds was identified from Streptomyces sp. SCSIO 40020. Heterologous e...
Gespeichert in:
Veröffentlicht in: | Journal of natural products (Washington, D.C.) D.C.), 2024-02, Vol.87 (2), p.371-380 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thiazole scaffold-based small molecules exhibit a range of biological activities and play important roles in drug discovery. Based on bioinformatics analysis, a putative biosynthetic gene cluster (BGC) for thiazole-containing compounds was identified from Streptomyces sp. SCSIO 40020. Heterologous expression of this BGC led to the production of eight new thiazole-containing compounds, grisechelins E, F, and I–N (1, 2, 5–10), and two quinoline derivatives, grisechelins G and H (3 and 4). The structures of 1–10, including their absolute configurations, were elucidated by HRESIMS, NMR spectroscopic data, ECD calculations, and single-crystal X-ray diffraction analysis. Grisechelin F (2) is a unique derivative, distinguished by the presence of a salicylic acid moiety. The biosynthetic pathway for 2 was proposed based on bioinformatics analysis and in vivo gene knockout experiments. Grisechelin E (1) displayed moderate antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MIC of 8 μg mL–1). |
---|---|
ISSN: | 0163-3864 1520-6025 1520-6025 |
DOI: | 10.1021/acs.jnatprod.3c01132 |