METTL14 inhibits Aβ1-42-induced neuronal injury through regulating the stability of CBLN4 mRNA in Alzheimer’s disease
Previous studies have suggested that N6-methyladenosine (mA) modification of RNA affects fundamental aspects of RNA metabolism, and mA dysregulation is implicated in various human diseases, including Alzheimer’s disease (AD). This study is designed to explore the role and mechanism of methyltransfer...
Gespeichert in:
Veröffentlicht in: | Journal of bioenergetics and biomembranes 2024-10, Vol.56 (5), p.495-504 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies have suggested that N6-methyladenosine (mA) modification of RNA affects fundamental aspects of RNA metabolism, and mA dysregulation is implicated in various human diseases, including Alzheimer’s disease (AD). This study is designed to explore the role and mechanism of methyltransferase-like 14 (METTL14) in the pathogenesis of AD. SK-N-SH cells were treated with Aβ1–42 to establish an in vitro model of AD. Cerebellin 4 (CBLN4) and METTL14 expression levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were analyzed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay. B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), C-caspase-3, total-caspase-3, C/EBP homologous protein (CHOP), and glucose-related protein 78 (GRP78) protein levels were determined using Western blot. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) levels were analyzed using ELISA. Reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) products were examined using special assay kits. Interaction between CBLN4 and METTL14 was verified using methylated RNA immunoprecipitation (MeRIP) and dual-luciferase reporter assays. CBLN4 and METTL14 expression was decreased in Aβ1-42-treated SK-N-SH cells. Upregulation of CBLN4 relieved Aβ1-42-induced SK-N-SH cell apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in vitro. At the molecular level, METTL14 could improve the stability and expression of CBLN4 mRNA via m6A methylation. Our findings indicated that m6A methylase METTL14-mediated upregulation of CBLN4 mRNA stability could repress Aβ1-42-triggered SK-N-SH cell injury, providing a promising therapeutic target for AD treatment. |
---|---|
ISSN: | 0145-479X 1573-6881 1573-6881 |
DOI: | 10.1007/s10863-024-10036-9 |