Ionic Covalent Organic Framework Membrane as Active Separator for Highly Reversible Zinc–Sulfur Battery

Zinc-sulfur (Zn-S) batteries exhibit a high theoretical energy density, nontoxicity, and cost-effectiveness, demonstrating significant potential for integration into large-scale energy storage systems. However, the phenomenon of polysulfide (including dissolved S8 and S x 2–) shuttling is a major is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (38), p.50036-50044
Hauptverfasser: Wang, Liyao, Xu, Yan, Xiao, Linyu, Liu, Yang, Wang, Lixinyu, Zha, Shangwen, Zhang, Shenxiang, Jin, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zinc-sulfur (Zn-S) batteries exhibit a high theoretical energy density, nontoxicity, and cost-effectiveness, demonstrating significant potential for integration into large-scale energy storage systems. However, the phenomenon of polysulfide (including dissolved S8 and S x 2–) shuttling is a major issue that results in rapid capacity decay and a short lifespan, limiting the practical performance of sulfur-based batteries. Herein, we fabricated an ionic covalent organic framework (iCOF) membrane as an active separator for the Zn-S battery. Sulfonic acid groups were introduced to the COF membrane, providing abundant negative charge sites in its pore wall. By combining size sieving and charge interaction between the polysulfide and pore wall, the iCOF membrane inhibited the crossover of polysulfides to the Zn metal anode without affecting the transport of metal ions. The Zn-S battery with the iCOF membrane as the separator shows a high-performance and low attenuation rate of 0.05% per cycle over 300 cycles at 2.5 A g–1. This study emphasizes the significance of separator design in enhancing Zn-S batteries and showcases the potential of functionalized framework materials for the development of high-performance energy storage systems.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c11422